1	Preclinical Development of a Stabilized RH5
2	Virus-Like Particle Vaccine that
3	Induces Improved Anti-Malarial Antibodies
4	Lloyd D. W. King ^{1,2,3} , David Pulido ³ , Jordan R. Barrett ^{1,2,3} , Hannah Davies ^{1,2,3} , Doris Quinkert ^{1,2,3} , Amelia
5	M. Lias ^{1,2,3} , Sarah E. Silk ^{1,2,3} , David J. Pattinson ³ , Ababacar Diouf ⁴ , Barnabas G. Williams ^{1,2,3} , Kirsty
6	McHugh ^{1,2,3} , Ana Rodrigues ^{1,2} , Cassandra A. Rigby ^{1,2} , Veronica Strazza ^{1,2} , Jonathan Suurbaar ^{3,5} , Chloe
7	Rees-Spear ^{3,6} , Rebecca A. Dabbs ³ , Andrew S. Ishizuka ³ , Yu Zhou ³ , Gaurav Gupta ³ , Jing Jin ³ , Yuanyuan
8	Li ³ , Cecilia Carnrot ⁷ , Angela M. Minassian ^{1,2,3,8} , Ivan Campeotto ¹ , Sarel J. Fleishman ⁹ , Amy R. Noe ^{10,11} ,
9	Randall S. MacGill ¹² , C. Richter King ¹² , Ashley J. Birkett ¹² , Lorraine A. Soisson ¹³ , Carole A. Long ⁴ ,
10	Kazutoyo Miura ⁴ , Rebecca Ashfield ^{1,2,3} , Katherine Skinner ^{1,2,3} , Mark Howarth ^{1,14} , Sumi Biswas ³ , and Simon
11	J. Draper ^{1,2,3,8,*} .
12	
13	¹ Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, UK.
14	² Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford,
15	OX1 3QU, UK.
16	³ The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK.
17	⁴ Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA.
18	⁵ West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra LG 54, Ghana.
19	^o London School of Hygiene and Tropical Medicine, London, WCIE /HT, UK.
20	⁴ Novavax AB, Kungsgatan 109, SE-753 18 Uppsala, Sweden.
21	^o NIHR Oxford Biomedical Research Centre, Oxford, UK.
22	¹⁰ Leides Life Sciences, Frederick, MD, USA
23	¹⁰ Leidos Life Sciences, Frederick, MD, USA.
24 25	¹² Conten for Vaccine Innevition and Access DATH, USA
23 26	¹³ US AID 1200 Despendencies Area NW, Westington DC 20004, US A
20 27	¹⁴ Current effiliation: Department of Pharmenelogy, University of Cambridge, Tannis Court Bood, Cambridge, CP2
∠1 20	Current armation: Department of Pharmacology, University of Camoridge, Tennis Court Road, Camoridge, CB2
20 20	IFD, UK.
29 30	* Corresponding author: Simon I. Draper (simon draper@bioch ox ac.uk)
50	

- 31 This research was funded in part by the UK Medical Research Council (MRC) [Grant numbers:
- 32 MR/P001351/1; MC_PC_15040; and MR/N013468/1]. For the purpose of Open Access, the author has
- 33 applied a CC BY public copyright licence to any Author Accepted Manuscript (AAM) version arising
- 34 from this submission.

King LDW et al.

35 Abstract

36 The development of a highly effective vaccine against the pathogenic blood-stage infection of human 37 malaria will require a delivery platform that can induce an antibody response of both maximal quantity 38 and functional quality. One strategy to achieve this includes presenting antigens to the immune system on 39 virus-like particles (VLPs). Here we sought to improve the design and delivery of the blood-stage 40 *Plasmodium falciparum* reticulocyte-binding protein homolog 5 (RH5) antigen, which is currently in a 41 Phase 2 clinical trial as a full-length soluble protein-in-adjuvant vaccine candidate called RH5.1/Matrix-42 MTM. We identify disordered regions of the full-length RH5 molecule induce non-growth inhibitory 43 antibodies in human vaccinees, and a re-engineered and stabilized immunogen that includes just the 44 alpha-helical core of RH5 induces a qualitatively superior growth-inhibitory antibody response in rats 45 vaccinated with this protein formulated in Matrix-MTM adjuvant. In parallel, bioconjugation of this new immunogen, termed "RH5.2", to hepatitis B surface antigen VLPs using the "plug-and-display" SpyTag-46 47 SpyCatcher platform technology also enabled superior quantitative antibody immunogenicity over soluble 48 antigen/adjuvant in vaccinated mice and rats. These studies identify a new blood-stage malaria vaccine 49 candidate that may improve upon the current leading soluble protein vaccine candidate RH5.1/Matrix-MTM. The RH5.2-VLP/Matrix-MTM vaccine candidate is now under evaluation in Phase 1a/b clinical 50 51 trials.

King LDW et al.

52 Introduction

53 Over the past two decades, the number of deaths from malaria, caused by the *Plasmodium falciparum* 54 parasite, has been steadily declining due to the improved deployment of antimalarial tools. However, the 55 success of malaria control measures requires sustained investment, which is expensive and threatened by 56 the emergence of drug and insecticide resistance. Moreover, worrying evidence suggests progress has stalled in recent years, with malaria cases and deaths rising since 2019¹. Hence, there remains an urgent 57 58 need for the development of transformative new tools, including highly efficacious and durable malaria 59 vaccines, to complement and/or replace current malaria prevention public health measures. Substantial 60 recent progress has been made in this area, with the RTS, S/AS01 (MosquirixTM) and R21/Matrix-MTM 61 subunit vaccines (that both target the circumsporozoite protein [CSP] on the liver-invasive sporozoite 62 stage of *P. falciparum*) showing efficacy against clinical malaria in young African infants ^{2,3}. However, 63 efficacy wanes over time and if a single sporozoite slips through the net of protective immunity and 64 infects the liver, then the subsequent disease-causing blood-stage of infection is initiated. Seasonal 65 vaccination has been demonstrated to be highly efficacious in Phase 3 trials, with RTS, S/AS01 66 (MosquirixTM) non-inferior to seasonal malarial chemoprophylaxis (SMC), which has been associated with approximately 75% efficacy ⁴⁻⁶; however, annual vaccination is expensive and a major burden on 67 already stretched health systems ⁷. Vaccination against the blood-stage merozoite, aiming to prevent 68 69 erythrocyte invasion and the clinical manifestation of malaria disease, represents an alternative and 70 complementary approach. Moreover, the combination of a new blood-stage anti-merozoite vaccine with 71 existing anti-sporozoite vaccines is currently regarded as a leading future vaccination strategy to achieve 72 higher and more durable efficacy⁸. 73

15

Merozoite invasion of human erythrocytes occurs rapidly and in a complex multistep process requiring numerous parasite ligand-host receptor interactions. Historic blood-stage vaccine candidates struggled because many of these parasite ligands are highly polymorphic and the interactions they mediate are

77	redundant ⁹ . However, the identification of the reticulocyte-binding protein homolog 5 (RH5) ¹⁰ has
78	renewed vigor in the <i>P. falciparum</i> blood-stage vaccine field over the last decade ⁸ . RH5 is an essential,
79	highly conserved and antibody-susceptible antigen, delivered to the parasite surface in a pentameric
80	protein complex ¹¹⁻¹³ where it binds to host basigin/CD147 ¹⁴ . This receptor-ligand interaction is critical
81	for parasite invasion ¹⁵ , underlies the human host tropism of <i>P. falciparum</i> ¹⁶ , and vaccination of <i>Aotus</i>
82	monkeys with RH5 conferred significant in vivo protection against a stringent blood-stage P. falciparum
83	challenge ¹⁷ . These preclinical data supported onward progression of RH5-based vaccine candidates to the
84	clinic, with four early-phase clinical trials now completed in the UK or Tanzania; each of these studies
85	utilized vaccines that deliver the full-length RH5 molecule (RH5_FL) using either a viral-vectored
86	platform $^{\rm 18,19}$ or a recombinant protein called RH5.1 $^{\rm 20}$ formulated in AS01_B adjuvant from GSK $^{\rm 21}$ or
87	Matrix-M TM adjuvant from Novavax (ClinicalTrials.gov NCT04318002). All of these vaccines have
88	shown acceptable safety and reactogenicity profiles, with the highest levels of antibody observed when
89	using the protein-in-adjuvant formulations ²¹ and/or when vaccinating Tanzanian infants as opposed to
90	UK or Tanzanian adults ¹⁹ . The RH5.1/Matrix-M TM vaccine candidate has since progressed to a Phase 2b
91	field efficacy trial in 5-17 month old infants in Burkina Faso (ClinicalTrials.gov NCT05790889).
92	
93	All of these RH5-based vaccine candidates have induced serum IgG antibodies in humans that mediate
94	functional growth inhibition activity (GIA) against P. falciparum in vitro. Notably, despite differences in
95	the quantity of anti-RH5 serum IgG induced, all of these vaccine candidates tested to-date show
96	comparable functional quality of the anti-RH5 human IgG ¹⁹ , i.e., they achieve the same amount of GIA
97	in vitro per unit of anti-RH5 antibody, consistent with all vaccine candidates encoding almost identical
98	immunogens based on RH5_FL. Importantly, functional antibody activity, as measured using the <i>in vitro</i>
99	assay of GIA, has also been shown to correlate with efficacy against experimental P. falciparum blood-
100	stage challenge of both Aotus monkeys ¹⁷ and UK adults ²¹ . This vaccine-induced mechanism of
101	protection against blood-stage P. falciparum was subsequently validated by passive transfer of anti-RH5

King LDW et al.

102	monoclonal antibody (mAb) in <i>Aotus</i> monkeys ²² and a humanized mouse model ²³ . However, despite this
103	progress, the overall quantity of anti-RH5_FL IgG associated with protection in the Aotus monkey model
104	was high ¹⁷ . We therefore sought here to develop an improved RH5-based vaccine candidate that could
105	substantially outperform the current clinical lead vaccine candidate, RH5.1/Matrix-M TM , in terms of
106	quantitative and/or qualitative antibody immunogenicity. To do this, we explored rational re-design of the
107	RH5 immunogen based on serological analyses of the anti-RH5.1 IgG from clinical trials and improved
108	delivery of RH5 using a virus-like particle (VLP) platform. In the case of the latter, given the well
109	described challenges of recombinant RH5 protein expression, we elected to test a "plug-and-display"
110	strategy using SpyTag-SpyCatcher bioconjugation technology ^{24,25} . We also elected to use the hepatitis B
111	surface antigen (HBsAg) VLP scaffold ²⁶ , given the extensive safety track record of the hepatitis B
112	vaccine and to align the delivery platform with that used for delivery of the CSP antigen by both RTS,S

113 and R21 ^{2,3}.

King LDW et al.

114 **Results**

115 Vaccine-induced human anti-RH5 growth inhibitory antibodies target RH5ΔNLC.

116 We previously assessed the RH5.1/AS01_B vaccine candidate in healthy malaria-naïve UK adults, using a

- 117 variety of dosing and immunization regimens ²¹. The RH5.1 protein was manufactured in a *Drosophila*
- 118 Schneider 2 (S2) stable cell line system and comprises the whole ~60 kDa RH5 soluble molecule with

119 four sites of potential N-linked glycosylation removed ²⁰. This molecule therefore includes the structured

120 alpha-helical core of RH5 (termed "RH5ΔNLC") and the predicted regions of disorder: the long N-

121 terminal region, intrinsic loop and small C-terminus (**Fig. 1A**). The structure of the α -helical core protein

122 (including the small C-terminus but lacking the N-terminus and intrinsic loop, known as "RH5ΔNL") was

123 previously reported ²⁷. Human serum samples, collected after three immunizations with RH5.1/AS01_B,

124 were all positive for IgG by ELISA against the recombinant full-length RH5.1, RH5 N-terminus (RH5-

125 Nt) and RH5 Δ NL proteins. Responses were comparable and did not differ significantly by vaccine dose

126 or delivery regimen (Fig. 1B). Sera were also tested by ELISA against a linear peptide array spanning the

127 RH5.1 antigen sequence. Responses were clearly detectable across all the regions of predicted protein

128 disorder (N-terminal region, intrinsic loop and C-terminus), confirming these contain linear antibody

129 epitopes which appear largely absent in the α -helical core regions (**Fig. 1C**). Vaccine-induced anti-RH5.1

130 serum IgG responses thus reacted across the whole molecule, including regions comprising both linear

131 and conformational epitopes.

132

We next assessed whether IgG antibodies targeting these different structural regions contribute to functional growth inhibition of *P. falciparum* parasites *in vitro* by first using an "antigen-reversal" GIA assay. As expected, inclusion of recombinant RH5.1 protein in the GIA assay could completely reverse all GIA mediated by a pool of purified IgG from RH5.1/AS01_B vaccinees. The same result was obtained when using the same concentration of RH5 Δ NL protein. In contrast, no reversal of GIA was observed when using recombinant RH5-Nt, even at 8-fold higher molar concentration (**Fig. 1D**). We also affinity-

King LDW et al.

139	purified anti-RH5.1 and anti-RH5ΔNL human IgG and both samples showed high level growth inhibition.
140	Following titration in the GIA assay, the RH5 Δ NL-specific IgG showed an ~9-fold improvement in terms
141	of the antigen-specific EC ₅₀ (8 μ g/mL, 95% CI: 6-27), as compared to RH5.1-specific IgG (70 μ g/mL,
142	95% CI: 50-114) (Fig. 1E). These data show antibodies targeting the N-terminus or intrinsic loop of RH5
143	do not contribute to functional GIA induced by the RH5.1 vaccine candidate. These data did not assess
144	the small C-terminus of RH5, however, we isolated a novel human IgG mAb, called R5.CT1, from an
145	$RH5.1/AS01_B$ vaccinee, that recognized this region. The R5.CT1 clone specifically bound peptides 61
146	and 62 (Fig. S1A) which together span the C-terminal 20 amino acids of RH5. Notably mAb R5.CT1
147	showed no GIA against P. falciparum in vitro (Fig. S1B). Together, these data suggest vaccine-induced
148	human anti-RH5.1 IgG growth inhibitory antibodies recognize the alpha-helical core of the RH5 molecule
149	and not the disordered regions. Also, the reason purified polyclonal RH5 Δ NL-specific IgG is
150	substantially more potent than RH5.1-specific IgG on a per μg basis is most likely due to the loss of these
151	
151	non-growth inhibitory responses.
151	non-growth inhibitory responses.
151 152 153	RH5ΔNLC ^{HS1} -SpyTag vaccine induces similar growth inhibitory antibodies to RH5ΔNL.
151 152 153 154	RH5ΔNLC^{HS1}-SpyTag vaccine induces similar growth inhibitory antibodies to RH5ΔNL. In light of the above data and to initiate design of an improved RH5-based vaccine candidate, we first
151 152 153 154 155	RH5ΔNLC^{HS1}-SpyTag vaccine induces similar growth inhibitory antibodies to RH5ΔNL. In light of the above data and to initiate design of an improved RH5-based vaccine candidate, we first assessed three constructs based on the original design of the RH5ΔNL molecule. All three constructs were
151 152 153 154 155 156	non-growth inhibitory responses. RH5ΔNLC^{HS1}-SpyTag vaccine induces similar growth inhibitory antibodies to RH5ΔNL. In light of the above data and to initiate design of an improved RH5-based vaccine candidate, we first assessed three constructs based on the original design of the RH5ΔNL molecule. All three constructs were produced as soluble secreted proteins, using the ExpreS ² <i>Drosophila</i> S2 stable cell line platform ²⁸ , and
151 152 153 154 155 156 157	non-growth inhibitory responses. RH5ΔNLC^{HS1}-SpyTag vaccine induces similar growth inhibitory antibodies to RH5ΔNL. In light of the above data and to initiate design of an improved RH5-based vaccine candidate, we first assessed three constructs based on the original design of the RH5ΔNL molecule. All three constructs were produced as soluble secreted proteins, using the ExpreS ² <i>Drosophila</i> S2 stable cell line platform ²⁸ , and purified by a C-terminal four amino acid C-tag ²⁹ – technologies that we previously used to
151 152 153 154 155 156 157 158	non-growth inhibitory responses. RH5ΔNLC^{HS1}-SpyTag vaccine induces similar growth inhibitory antibodies to RH5ΔNL. In light of the above data and to initiate design of an improved RH5-based vaccine candidate, we first assessed three constructs based on the original design of the RH5ΔNL molecule. All three constructs were produced as soluble secreted proteins, using the ExpreS ² <i>Drosophila</i> S2 stable cell line platform ²⁸ , and purified by a C-terminal four amino acid C-tag ²⁹ – technologies that we previously used to biomanufacture the full-length RH5.1 protein for clinical trials ²⁰ . Alongside the existing RH5ΔNL
151 152 153 154 155 156 157 158 159	RH5ΔNLC ^{HS1} -SpyTag vaccine induces similar growth inhibitory antibodies to RH5ΔNL. In light of the above data and to initiate design of an improved RH5-based vaccine candidate, we first assessed three constructs based on the original design of the RH5ΔNL molecule. All three constructs were produced as soluble secreted proteins, using the ExpreS ² <i>Drosophila</i> S2 stable cell line platform ²⁸ , and purified by a C-terminal four amino acid C-tag ²⁹ – technologies that we previously used to biomanufacture the full-length RH5.1 protein for clinical trials ²⁰ . Alongside the existing RH5ΔNL protein, we produced two additional molecules that also included removal of the C-terminal 20 amino
 151 152 153 154 155 156 157 158 159 160 	RH5ΔNLC ^{HS1} -SpyTag vaccine induces similar growth inhibitory antibodies to RH5ΔNL. In light of the above data and to initiate design of an improved RH5-based vaccine candidate, we first assessed three constructs based on the original design of the RH5ΔNL molecule. All three constructs were produced as soluble secreted proteins, using the ExpreS ² <i>Drosophila</i> S2 stable cell line platform ²⁸ , and purified by a C-terminal four amino acid C-tag ²⁹ – technologies that we previously used to biomanufacture the full-length RH5.1 protein for clinical trials ²⁰ . Alongside the existing RH5ΔNL protein, we produced two additional molecules that also included removal of the C-terminal 20 amino acids (to make "RH5ΔNLC") followed by addition of a C-terminal SpyTag (ST), prior to the C-tag, to
 151 152 153 154 155 156 157 158 159 160 161 	RH5ΔNLC ^{HS1} -SpyTag vaccine induces similar growth inhibitory antibodies to RH5ΔNL. In light of the above data and to initiate design of an improved RH5-based vaccine candidate, we first assessed three constructs based on the original design of the RH5ΔNL molecule. All three constructs were produced as soluble secreted proteins, using the ExpreS ² <i>Drosophila</i> S2 stable cell line platform ²⁸ , and purified by a C-terminal four amino acid C-tag ²⁹ – technologies that we previously used to biomanufacture the full-length RH5.1 protein for clinical trials ²⁰ . Alongside the existing RH5ΔNL protein, we produced two additional molecules that also included removal of the C-terminal 20 amino acids (to make "RH5ΔNLC") followed by addition of a C-terminal SpyTag (ST), prior to the C-tag, to enable conjugation to SpyCatcher (SC)-based display platforms ^{24,26} . The first of these two new molecules
 151 152 153 154 155 156 157 158 159 160 161 162 	RH5ΔNLC ^{HS1} -SpyTag vaccine induces similar growth inhibitory antibodies to RH5ΔNL. In light of the above data and to initiate design of an improved RH5-based vaccine candidate, we first assessed three constructs based on the original design of the RH5ΔNL molecule. All three constructs were produced as soluble secreted proteins, using the ExpreS ² <i>Drosophila</i> S2 stable cell line platform ²⁸ , and purified by a C-terminal four amino acid C-tag ²⁹ – technologies that we previously used to biomanufacture the full-length RH5.1 protein for clinical trials ²⁰ . Alongside the existing RH5ΔNL protein, we produced two additional molecules that also included removal of the C-terminal 20 amino acids (to make "RH5ΔNLC") followed by addition of a C-terminal SpyTag (ST), prior to the C-tag, to enable conjugation to SpyCatcher (SC)-based display platforms ^{24,26} . The first of these two new molecules otherwise maintained the same RH5 sequence, which we termed "RH5ΔNLC-ST". The second version,

163 RH5ΔNLC^{HS1}-ST, used a previously reported RH5 sequence bearing 18 mutations, defined *in silico*, that

164	confer improved molecular packing, surface polarity and thermostability of the molecule without
165	affecting its ligand binding or immunogenic properties ³⁰ (Fig. 2A). Each protein was subsequently
166	expressed from a polyclonal S2 stable cell line and purified from the supernatant by C-tag affinity and
167	size exclusion chromatography. Purified proteins ran at their expected molecular weights on an SDS-
168	PAGE gel (Fig. 2B). RH5ΔNLC-ST protein was also recognized by a panel of 14 human mAbs
169	previously shown to span six distinct conformational epitope regions on the RH5 molecule ³¹ (Fig. S2A).
170	Notably, the RH5ΔNLC ^{HS1} -ST protein showed greatly reduced or no mAb binding to one of these epitope
171	sites, and loss of binding of a single mAb at another site (Fig. S2B), likely due to the introduction of the
172	stabilizing mutations in this variant RH5 construct ³⁰ . Conversely, an approximately 8-fold higher yield
173	on average of purified RH5 Δ NLC ^{HS1} -ST protein was achieved, as compared to RH5 Δ NLC-ST and as
174	anticipated when including the stabilizing mutations (Fig. 2C).
175	
176	To assess immunogenicity of the new SpyTagged antigens, 2 µg each protein was formulated in Matrix-
177	M TM adjuvant and used to immunize BALB/c mice intramuscularly three times at three-week intervals.
178	Anti-RH5 serum IgG responses were measured against full-length RH5.1 by ELISA after the first and
179	final vaccinations. Following the first immunization, the RH5ΔNLC-ST protein was significantly more
180	immunogenic than RH5 Δ NL ($P = 0.02$, Dunn's multiple comparison test), however responses equalized
181	for these two proteins after three immunizations. In contrast, RH5 Δ NLC ^{HS1} -ST showed significantly
182	lower responses (~2-3-fold) after three doses as compared to RH5 Δ NLC-ST (Fig. 2D). This small
183	reduction in recognition of the RH5.1 protein is likely explained by the introduction of the stabilizing
184	mutations into the RH5 Δ NLC ^{HS1} construct. To determine if the stabilizing mutations in RH5 Δ NLC ^{HS1} -ST
185	and/or C-terminal truncation in RH5 Δ NLC would also affect the functional quality of the growth
186	inhibitory antibody response, we purified the total IgG from pools of mouse sera (6 mice per
187	antigen/group) and tested for in vitro GIA against P. falciparum (Fig. 2E). Here all three proteins could
188	induce an anti-RH5 IgG response with very similar functional quality, i.e., same levels of GIA per unit of

King LDW et al.

189	anti-RH5 IgG. Consequently, given i) the comparable functional quality of anti-RH5 IgG induced by both
190	SpyTagged proteins and ii) the very low production yield of RH5ΔNLC-ST, we elected to progress the
191	RH5ΔNLC ^{HS1} -ST protein to further study despite the small reduction in overall immunogenicity, and
192	termed this construct "RH5.2-ST".
193	
194	Production of a RH5.2-HBsAg virus-like particle.
194 195	Production of a RH5.2-HBsAg virus-like particle.To produce a new VLP-based vaccine candidate, we next tested conjugation of the RH5.2-ST protein to a
194 195 196	Production of a RH5.2-HBsAg virus-like particle. To produce a new VLP-based vaccine candidate, we next tested conjugation of the RH5.2-ST protein to a hepatitis B surface antigen particle fused to SpyCatcher (HBsAg-SC) ²⁶ . We initially conjugated the
194 195 196 197	 Production of a RH5.2-HBsAg virus-like particle. To produce a new VLP-based vaccine candidate, we next tested conjugation of the RH5.2-ST protein to a hepatitis B surface antigen particle fused to SpyCatcher (HBsAg-SC) ²⁶. We initially conjugated the RH5.2-ST to HBsAg-SC in a 1:1 molar ratio. Following an overnight conjugation reaction, any free
194 195 196 197 198	Production of a RH5.2-HBsAg virus-like particle. To produce a new VLP-based vaccine candidate, we next tested conjugation of the RH5.2-ST protein to a hepatitis B surface antigen particle fused to SpyCatcher (HBsAg-SC) ²⁶ . We initially conjugated the RH5.2-ST to HBsAg-SC in a 1:1 molar ratio. Following an overnight conjugation reaction, any free unconjugated RH5.2-ST protein was removed by SEC, thereby leaving the conjugated RH5.2-HBsAg

199 VLP product. Analysis by reducing SDS-PAGE showed the expected banding pattern for HBsAg-SC

200 with a dominant monomer band (~37.0 kDa) as well as multimers (Fig. 3A). Following conjugation, a

201 new band corresponding to the RH5.2-HBsAg monomer unit was observed at the expected size of ~77

202 kDa along with other bands corresponding to the expected multimers at higher molecular weight. Free

203 unconjugated RH5.2-ST protein was not observed following its removal by SEC, although some

204 unconjugated HBsAg-SC monomer units remained within the VLP preparation. Analysis by densitometry

205 indicated a conjugation efficiency of ~80%. A study in BALB/c mice was performed next to compare the

206 immunogenicity of RH5.2-ST soluble protein versus the RH5.2-VLP. Dosing of the RH5.2-VLP was

adjusted in each case to deliver the same molar amount of RH5.2 antigen as the soluble protein

208 comparator (Fig. 3B). Following three immunizations, the RH5.2-VLP formulated in Matrix-M[™]

adjuvant showed comparable anti-RH5 serum IgG responses across all three doses tested (1, 0.1 and 0.01

 μ g; P = 0.39, Kruskal-Wallis test). In contrast, the same analysis with soluble RH5.2-ST protein showed a

211 clear dose response, with no antibodies detected at the lowest 0.01 μ g dose (P < 0.0001, Kruskal-Wallis

test). When comparing across the same doses of soluble RH5.2-ST versus the RH5.2-VLP, only the 1 µg

213 dose showed comparable immunogenicity, whilst the RH5.2-VLP was significantly more immunogenic at

214	the lower doses ($P = 0.002$ for both the 0.1 and 0.01 µg doses, Dunn's multiple comparison test). Finally,
215	in the absence of adjuvant, a 1 μ g dose of the RH5.2-VLP still induced responses, albeit at a lower level
216	than when using Matrix-M TM adjuvant; in contrast the soluble protein showed negligible immunogenicity
217	(Fig. 3B). Analysis of responses following the first and second vaccinations also showed that the 1 and
218	0.1 µg doses of RH5.2-VLP formulated in Matrix-M [™] primed detectable serum antibody responses after
219	only a single immunization and achieved maximal titers after two immunizations. In all cases, the RH5.2-
220	VLP was more immunogenic than the soluble protein (Fig. S3A,B). A second experiment was performed
221	using the same total dose of antigen to mirror clinical practice. Here, a 16 ng total protein dose of the
222	RH5.2-VLP was compared to a 16 ng dose of soluble RH5.2-ST or soluble RH5.1 (the current lead
223	clinical antigen); all were formulated in Matrix-M TM adjuvant. Following three immunizations, only the
224	RH5.2-VLP showed high titer anti-RH5 serum IgG responses in contrast to negligible immunogenicity
225	observed with either soluble protein vaccine (Fig. 3C). Both experiments confirmed the new RH5.2-VLP
226	is inherently more immunogenic than soluble RH5 protein in mice.
227	
228	However, despite the highly promising immunogenicity, ongoing studies indicated the conjugated RH5.2-
229	VLP was prone to precipitation during production, resulting in substantial loss of product. We thus
230	attempted to optimize reaction conditions by increasing the salt concentration and lowering the
231	temperature, as well as by combining the two components (RH5.2-ST and HBsAg-SC) dropwise. We also
232	tested incubation of the two components in different molar ratios (RH5.2-ST:HBsAg-SC as 1:1, 0.5:1,
233	0.25:1 and 0.1:1); here, as expected, more unconjugated HBsAg-SC monomer units remained when
234	combining the VLP with less RH5.2-ST (Fig. 3D). Precipitation was also greatly decreased, and overall
235	process yield increased when using the 0.25:1 or 0.1:1 molar ratios in the conjugation reaction. We
236	therefore next proceeded to screen the different products for immunogenicity. BALB/c mice were
237	immunized three times with the four different RH5.2-VLPs all formulated in Matrix-M [™] adjuvant.
238	Dosing was adjusted in each case to deliver the same molar amount of RH5.2 antigen (10 ng).

King LDW et al.

239	Interestingly, maximal titers were reached faster with VLPs produced using the lower molar ratios (Fig.
240	S4A,B), although following three doses all preparations showed comparable anti-RH5.1 serum IgG
241	responses (Fig. 3E). Serum antibody responses against the HBsAg VLP carrier inversely related to the
242	molar ratio used in the conjugation reaction, with no detectable responses in mice immunized with the
243	RH5.2-VLP produced using the 1:1 or 0.5:1 ratio (Fig. 3F). These higher anti-HBsAg responses,
244	especially in the 0.1:1 molar ratio group, could have been due to the higher total protein dose used in this
245	experiment and/or excess of unconjugated HBsAg-SC subunits on these particles. Nevertheless, we
246	proceeded with further study and evaluation of the RH5.2-VLP produced using the 0.25:1 ratio, as a
247	balanced trade off with regard to production yield versus strong anti-RH5.2 immunogenicity and low anti-
248	HBsAg VLP carrier immunogenicity. Further analysis of this product by transmission electron
249	microscopy (TEM) confirmed particles of the expected ~20 nm in size (Fig. 3G). The RH5.2-VLP was
250	also recognized by the same anti-RH5 human mAbs as reacted with the parental RH5 Δ NLC ^{HS1} -ST
251	protein, confirming the presence and accessibility of these critical conformational epitopes on the VLP
252	(Fig. S2C).
253	

254 The growth inhibitory antibody response induced by the RH5.2-VLP is superior to RH5.1.

In a final study, we compared the functional immunogenicity of the RH5.2-VLP to soluble RH5.2-ST

256 protein and the current clinical antigen (soluble RH5.1 protein) in Wistar rats. All antigens were

257 formulated in Matrix-MTM adjuvant and administered intramuscularly. Groups of six animals were

258 immunized three times, at monthly intervals, using the same total dose of vaccine (2 µg) to mirror clinical

259 practice. Serum IgG antibody levels were assessed against full-length RH5.1 by ELISA. Responses

260 induced by RH5.1 and the RH5.2-VLP reached maximal levels after two doses, and were superior to

soluble RH5.2-ST after every vaccine dose, with RH5.1 significant versus RH5.2-ST (Fig. 4A).

262 Following the third dose, total IgG was purified from serum and titrated in the assay of GIA against *P*.

263 falciparum parasites. Here, the RH5.2-VLP showed significantly improved GIA over RH5.1, with the

264	median EC_{50} of total IgG 9.6-fold lower (Fig. 4B). Given the comparable quantitative immunogenicity
265	shown by RH5.1 and the RH5.2-VLP (Fig. 4A), we next assessed the functional quality of the RH5.1-
266	specific IgG by plotting the GIA data versus ELISA performed on the purified total IgG (Fig. 4C). Here,
267	the antibodies induced in the RH5.2-VLP and RH5.2-ST protein immunized groups showed identical
268	quality, i.e., the same GIA per μ g of RH5.1-specific IgG, and both significantly improved upon the
269	functional quality induced by RH5.1 immunization (Fig. 4D). These data suggest the functional quality of
270	RH5.2-induced IgG is comparable with soluble protein or VLP delivery. Consequently, the improvement
271	in overall levels of GIA observed with the RH5.2-VLP (Fig. 4B) relate to its superior quantitative
272	immunogenicity (when comparing to soluble RH5.2) and superior qualitative immunogenicity (when
273	comparing to RH5.1). Given our earlier data indicated the N-terminus and intrinsic loop of RH5 do not
274	contribute to functional GIA induced by RH5.1 in humans, we hypothesized the improvement in
275	functional antibody quality seen with RH5.2 over RH5.1 in the rats was due to loss of responses against
276	these disordered regions of the molecule. We thus tested the rat sera by ELISA against RH5 Δ NL and
277	compared the ratio of this response to the RH5.1 response (Fig. 4E). As expected, the ratios for RH5.2
278	and RH5.2-VLP were approximately one, given the RH5.2 immunogen is based on the RH5 Δ NL
279	structure, and thus ELISA with either RH5.1 or RH5∆NL should give a comparable readout. However,
280	the ratio of RH5.1:RH5 Δ NL-specific IgG induced by the RH5.1 vaccine was ~250 following the first
281	dose, suggesting the RH5∆NL antibody response is initially sub-dominant to responses against the N-
282	terminus and intrinsic loop present in RH5.1. This sub-dominance decreases after three vaccine doses,
283	with the ratio reduced to ~6.5 (Fig. 4E). Overall, these ELISA data suggested a substantial antibody
284	response is mounted to the N-terminus and/or intrinsic loop when using RH5.1. To explore this further,
285	we also conducted a second quality analysis by re-plotting the GIA data versus ELISA on the purified
286	IgG performed against RH5∆NL protein. Here, in support of our hypothesis, all three constructs now
287	performed similarly, with each on average achieving 50 % GIA at approximately the same level of anti-
288	RH5ΔNL IgG (Fig. 4F). These data strongly suggest all of the GIA induced in the rats by RH5.1 was

- 289 mediated by the subset of IgG that recognize RH5 Δ NL, in agreement with the observations in human
- 290 vaccine responses (**Fig. 1**).

King LDW et al.

291 Discussion

292	Various vaccine candidates encoding the RH5_FL molecule have been progressed clinically ^{18,19,21} , with
293	the most advanced candidate, RH5.1/Matrix-M TM (ClinicalTrials.gov NCT04318002), now entering a
294	Phase 2b efficacy trial in a malaria-endemic country. These vaccines have been developed and prioritized
295	based on evidence that RH5 vaccine-induced in vivo growth inhibition (IVGI) of blood-stage P.
296	falciparum is antibody-mediated and correlates with in vitro GIA in preclinical and human challenge
297	studies ^{17,21-23} . However, the quantity of anti-RH5_FL IgG identified as fully protective in <i>Aotus</i> monkeys
298	(immunized with protein formulated in Freund's adjuvant) was high (12) and at a level not yet observed
299	in clinical testing. We therefore sought to develop a new vaccine candidate with improved quantitative
300	and/or qualitative functional anti-RH5 antibody immunogenicity.
301	
302	To select a vaccine antigen design, we explored functional responses induced in UK adults vaccinated
303	with the RH5.1/AS01 _B vaccine candidate 21 . These ELISA data confirmed vaccinees mounted responses
304	against the whole of the RH5 molecule, including the conformational alpha-helical core of RH5 as well as
305	the three linear disordered regions: the long N-terminal region (RH5-Nt), intrinsic loop and small C-
306	terminus. However, a combination of GIA reversal and antibody depletion assays, and analysis of a
307	human mAb to the C-terminus, all indicated that antibodies raised to the three disordered regions are not
308	making a measurable contribution to the overall levels of GIA mediated by anti-RH5.1 IgG. These data
309	are consistent with previous reports showing that murine or human mAbs targeting the N-terminus or
310	intrinsic loop do not inhibit <i>P. falciparum</i> growth <i>in vitro</i> ^{31,32} and that high-dose passive transfer of a
311	mAb against the intrinsic loop failed to protect <i>Aotus</i> monkeys against <i>P. falciparum</i> challenge ²² . In
312	contrast to the results reported here, another study reported that RH5-Nt binds the parasite protein P113
313	and that vaccination of rabbits with RH5-Nt protein could induce antibodies that mediate modest levels of
314	GIA ³³ ; however, we could not identify a similar contribution of anti-RH5-Nt IgG to the GIA induced by
315	human RH5.1 vaccination in our studies. Our data are also consistent with other studies that have since
	15 P a g e

King LDW et al.

316	questioned the significance of P113 in merozoite invasion. In particular, one study found anti-P113
317	antibodies that block the interaction with RH5-Nt are GIA-negative ³⁴ , whilst another reported P113 plays
318	an important role in maintaining normal architecture of the parasitophorous vacuole membrane within the
319	infected erythrocyte ³⁵ . Moreover, it has since been reported that RH5-Nt is cleaved off the RH5 molecule
320	within the micronemes of the <i>P. falciparum</i> parasite by the aspartic protease plasmepsin X prior to release
321	of RH5 to the merozoite surface ³⁶ , suggesting it would be an unlikely target of antibodies. In summary,
322	these data strongly suggest these regions of disorder within RH5_FL are not targets of functional IgG.
323	This conclusion is further supported by our data showing the RH5 Δ NL protein could reverse all GIA
324	induced by human RH5.1 vaccination, suggesting that all growth inhibitory epitopes targeted by the
325	human IgG are located within this protein construct; this is also consistent with known epitope
326	information of anti-RH5 murine and human mAbs reported previously and shown to have anti-parasitic
327	activity 27,31,32,37 . Finally, our data showed an ~9-fold improvement in the antigen-specific GIA EC ₅₀
328	potency when comparing affinity-purified polyclonal IgG specific for RH5 Δ NL versus RH5.1. On the
329	basis of all these data, we elected to focus new vaccine design efforts on a molecule lacking all three
330	disordered regions, which we termed "RH5 Δ NLC".
331	
332	To prepare for biomanufacture of clinical-grade immunogen, we produced new protein constructs
333	utilizing the same expression and purification platform technologies as those used previously for the
334	clinical biomanufacture of RH5.1 20 . Here we could produce the wild-type RH5 Δ NLC antigen with a C-
335	terminal SpyTag followed by C-tag, as well as a second variant sequence incorporating 18 mutations that
336	were defined in silico and previously reported to confer improved molecular packing, surface polarity and
337	thermostability of the RH5ΔNL molecule ³⁰ . Consistent with the original report, the yield of purified
338	SpyTagged RH5ΔNLC protein was ~8-fold higher when incorporating the stabilizing mutations.
339	Immunization of mice with these monomeric soluble proteins-in-adjuvant showed a modestly higher
340	antibody response, as measured against RH5.1 antigen, when using the wild-type sequence proteins as

16 | P a g e

341	compared to the mutated version. Consistent with this, we noted reduced binding or loss of binding by
342	human mAbs at two previously identified antigenic sites within the RH5ΔNL molecule ³¹ , indicating that
343	a small number of specific antibody epitopes were affected by the stabilizing mutations. However,
344	regardless of this and consistent with the original report of the stabilized RH5 Δ NL sequence ³⁰ , we
345	observed no difference in the functional quality of the RH5-specific antibodies elicited through
346	vaccination of mice with these new SpyTagged proteins formulated in Matrix-M TM adjuvant. Whether
347	these mutations would significantly impact immune responses in humans remains to be determined.
348	Given the substantially higher yield of the stabilized RH5ΔNLC SpyTagged variant, we proceeded with
349	this stabilized version of the RH5ΔNLC protein which we termed "RH5.2-ST".
350	
351	VLP-based immunogens, that deliver multimeric or arrayed antigen, have been widely shown to offer
352	numerous advantages over soluble antigen vaccines. These include improved trafficking to draining
353	lymph nodes, improved efficiency of B cell receptor cross-linking as well as oriented antigen display, all
354	of which can substantially improve quantitative and/or qualitative antibody immunogenicity ^{38,39} . We thus
355	explored the delivery of the RH5.2 immunogen following bioconjugation to HBsAg VLPs using the
356	SpyTag-SpyCatcher platform ^{24,26} . These lipoprotein VLPs are ~20-30 nm in size and contain ~100
357	monomeric HBsAg polypeptide subunits ⁴⁰ . We selected HBsAg VLPs given they have been safely used
358	in humans for decades as a highly effective anti-hepatitis B virus vaccine ⁴¹ , and to align RH5.2 delivery
359	platform with the two approved pre-erythrocytic malaria vaccines, RTS,S/AS01 (Mosquirix TM) and
360	R21/Matrix-M TM , both of which are adjuvanted chimeric HBsAg VLPs. Our initial attempts to conjugate
361	RH5.2-ST to HBsAg-SC VLPs at a 1:1 molar ratio showed a maximal conjugation efficiency of ~80% by
362	densitometry analysis, however, the overall process yield was low due to significant precipitation and loss
363	of product during the conjugation process. Reaction conditions were subsequently optimized leading to
364	improved yield, but this necessitated conjugating RH5.2-ST at a lower molar ratio. Efforts to re-design

King LDW et al.

365	RH5-based protein immunogens with improved solubility characteristics currently remain the focus of
366	ongoing work.

367

368	We subsequently undertook a series of mouse immunogenicity studies comparing the RH5.2-VLP versus
369	the soluble RH5.2 and RH5.1 vaccine candidates. Notably, quantitative antibody immunogenicity in mice
370	was determined by the presence of adjuvant, number of immunizations and immunogen dose. These data
371	showed the RH5.2-VLP was consistently more immunogenic than soluble antigen after three
372	immunizations and when tested i) at low dose (in the 10-100 ng range) in the presence of Matrix-M TM
373	adjuvant and ii) at high dose $(1 \ \mu g)$ in the absence of Matrix-M TM adjuvant. Responses induced by the
374	RH5.2-VLP in Matrix-M [™] adjuvant were also higher after one or two immunizations and reached
375	maximal titers earlier, across the dose range tested, as compared to soluble antigen. Moreover, similar to a
376	previous study of the transmission-blocking malaria antigen Pfs25 conjugated to HBsAg VLPs ²⁶ ,
377	maximal anti-RH5 serum IgG responses were achieved following three immunizations of the RH5.2-VLP
378	in Matrix-M [™] adjuvant, regardless of RH5.2 conjugation density to the HBsAg VLP.
379	
380	We subsequently proceeded to further test the RH5.2-VLP produced using the 0.25:1 molar ratio. These
381	VI Demonstration of the second data and the second of the second of DIIS with the second data and the seco
	VLPs were of the expected size and bound the same panel of numan anti-RH5 mAbs as the soluble RH5.2
382	vLPs were of the expected size and bound the same panel of numan anti-RHS mAbs as the soluble RHS.2 antigen. Immunization of Wistar rats with three 2 μ g doses of antigen formulated in Matrix-M TM adjuvant
382 383	VLPs were of the expected size and bound the same panel of numan anti-RH5 mAbs as the soluble RH5.2 antigen. Immunization of Wistar rats with three 2 μ g doses of antigen formulated in Matrix-M TM adjuvant showed the RH5.2-VLP outperformed soluble RH5.2 in terms of quantitative immunogenicity but
382383384	vLPs were of the expected size and bound the same panel of numan anti-RHS mAbs as the soluble RH5.2 antigen. Immunization of Wistar rats with three 2 μ g doses of antigen formulated in Matrix-M TM adjuvant showed the RH5.2-VLP outperformed soluble RH5.2 in terms of quantitative immunogenicity but maintained comparability to the larger soluble RH5.1 protein. However, functional testing of the purified
382383384385	VLPs were of the expected size and bound the same panel of numan anti-RHS mAbs as the soluble RH5.2 antigen. Immunization of Wistar rats with three 2 μ g doses of antigen formulated in Matrix-M TM adjuvant showed the RH5.2-VLP outperformed soluble RH5.2 in terms of quantitative immunogenicity but maintained comparability to the larger soluble RH5.1 protein. However, functional testing of the purified total IgG from RH5.2-VLP vaccinated rats showed significantly improved GIA over RH5.1, with a
 382 383 384 385 386 	VLPs were of the expected size and bound the same panel of numan anti-RHS mAbs as the soluble RHS.2 antigen. Immunization of Wistar rats with three 2 μ g doses of antigen formulated in Matrix-M TM adjuvant showed the RH5.2-VLP outperformed soluble RH5.2 in terms of quantitative immunogenicity but maintained comparability to the larger soluble RH5.1 protein. However, functional testing of the purified total IgG from RH5.2-VLP vaccinated rats showed significantly improved GIA over RH5.1, with a median 9.6-fold reduction in the EC ₅₀ of total IgG. To our knowledge, this is the first vaccine candidate to
 382 383 384 385 386 387 	VLPs were of the expected size and bound the same panel of numan anti-RH5 mAbs as the soluble RH5.2 antigen. Immunization of Wistar rats with three 2 μ g doses of antigen formulated in Matrix-M TM adjuvant showed the RH5.2-VLP outperformed soluble RH5.2 in terms of quantitative immunogenicity but maintained comparability to the larger soluble RH5.1 protein. However, functional testing of the purified total IgG from RH5.2-VLP vaccinated rats showed significantly improved GIA over RH5.1, with a median 9.6-fold reduction in the EC ₅₀ of total IgG. To our knowledge, this is the first vaccine candidate to significantly outperform RH5.1 in terms of functional immunogenicity in a preclinical model, including
 382 383 384 385 386 387 388 	VLPs were of the expected size and bound the same panel of numan anti-RH5 mAbs as the soluble RH5.2 antigen. Immunization of Wistar rats with three 2 μ g doses of antigen formulated in Matrix-M TM adjuvant showed the RH5.2-VLP outperformed soluble RH5.2 in terms of quantitative immunogenicity but maintained comparability to the larger soluble RH5.1 protein. However, functional testing of the purified total IgG from RH5.2-VLP vaccinated rats showed significantly improved GIA over RH5.1, with a median 9.6-fold reduction in the EC ₅₀ of total IgG. To our knowledge, this is the first vaccine candidate to significantly outperform RH5.1 in terms of functional immunogenicity in a preclinical model, including comparison to vaccines targeting the wider RH5 invasion complex ⁴² . This improvement was driven by a

18 | P a g e

King LDW et al.

390	achieving 50 % GIA at median levels of ~5 μ g/mL RH5.1-specific antibody. Notably, this qualitative
391	improvement was consistent across all RH5.2-vaccinated rats, whether immunized with soluble antigen or
392	the HBsAg-VLP. This indicates no added benefit of VLP delivery with regard to qualitative
393	immunogenicity and that the conjugated RH5.2 is likely fully exposed and/or flexibly displayed on the
394	VLP surface. Consistent with this, the mAb panel analysis detected the identical range of epitopes on both
395	soluble and VLP-conjugated RH5.2 antigen, including those in the C-terminal region of RH5.2 ^{31,43} that
396	would be expected to be closer to the VLP surface. In summary, vaccination with the RH5.2 immunogen,
397	itself based on the RH5ΔNLC molecule, induced a serum antibody response of superior functional quality
398	per unit of anti-RH5.1 IgG as compared to the current clinical lead vaccine RH5.1/Matrix-M TM . This was
399	most likely due to loss of non-functional IgG responses against the disordered regions of the full-length
400	RH5 molecule (when using RH5.2), which appear to dilute the subdominant and functional IgG induced
401	against the helical core (when using RH5.1). In parallel, VLP-based delivery improved quantitative
402	immunogenicity against the smaller RH5.2 immunogen, thereby leading to the highest levels of GIA
403	observed in rats with the RH5.2-VLP.
404	
405	The RH5.2-VLP antigen has since completed biomanufacture in line with current good manufacturing

406 practice (cGMP) and is entering Phase 1a/b clinical trials in the United Kingdom and The Gambia

407 (ClinicalTrials.gov NCT05978037 and NCT05357560) formulated in Matrix-MTM adjuvant. These will

408 enable the comparison in humans of the RH5-based immunogens delivered as a soluble protein versus an409 array on HBsAg-VLPs.

King LDW *et al*.

410 Methods

411 **Model of RH5.1**

412 AlphaFold model AF-Q8IFM5-F1^{44,45} was imported into ChimeraX software ⁴⁶ version 1.6.1 for

- 413 visualization of the different structural regions of RH5.1.
- 414

415 Clinical serum samples

416 All human serum samples were from the VAC063 clinical trial ²¹. Malaria-naïve healthy UK adult

- 417 volunteers received three intramuscular doses of the RH5.1 antigen 20 formulated in 0.5 mL AS01_B
- 418 adjuvant (GSK) in various dosing regimens as previously described. Serum samples taken two weeks
- 419 after the second dose or the third and final dose were used in the studies reported here. VAC063 received
- 420 ethical approval from the UK NHS Research Ethics Service (Oxfordshire Research Ethics Committee A,
- 421 Ref 16/SC/0345) and was approved by the UK Medicines and Healthcare products Regulatory Agency
- 422 (Ref 21584/0362/001-0011). Volunteers signed written consent forms and consent was verified before
- 423 each vaccination. The trial was registered on ClinicalTrials.gov (NCT02927145) and was conducted
- 424 according to the principles of the current revision of the Declaration of Helsinki 2008 and in full

425 conformity with the ICH guidelines for Good Clinical Practice (GCP).

426

427 Generation of polyclonal Schneider 2 (S2) stable cell lines

- 428 All RH5 constructs were based on the *P. falciparum* 3D7 clone sequence and potential N-linked
- 429 glycosylation sequons were mutated from N-X-S/T to N-X-A. Production of stable S2 cell lines
- 430 expressing the full-length RH5.1 (residues E26-Q526) and RH5ΔNL (residues K140-K247 and N297-
- 431 N526) proteins has been described previously 20,27 . Synthetic genes encoding RH5 Δ NLC-ST (residues
- 432 K140-K247 and N297-N506) or RH5.2-ST (residues K140-K247 and N297-N506 with 18 stabilizing
- 433 mutations ³⁰: I157L, D183E, A233K, M304F, K312N, L314F, K316N, M330N, S370A, S381N, T384K,
- 434 L392K, T395N, N398E, R458K, N463K, S467A, F505L) were codon optimized for expression in

King LDW et al.

435	Drosophila melanogaster and included flanking 5' EcoRI and 3' NotI sites that were used to subclone
436	each gene into the pExpreS ² -2 plasmid (ExpreS ² ion Biotechnologies, Denmark) ²⁸ . These two SpyTagged
437	RH5 constructs also included an N-terminal BiP insect signal peptide and a C-terminal flexible linker
438	(GSGGSGGSG) followed by SpyTag (AHIVMVDAYKPTK) and C-tag (EPEA) ^{24,28,29} . Stable polyclonal
439	S2 insect cells lines were generated through transient transfection with ExpreS2TR reagent (Expression
440	Systems) mixed with the relevant plasmid and subsequent culturing under selection with G418 (Gibco)
441	supplemented EX-CELL 420 serum-free media (Merck).
442	
443	Expression and purification of recombinant RH5 proteins
444	Stable monoclonal (RH5.1) or polyclonal (RH5ΔNL, RH5ΔNLC-ST, RH5.2-ST) S2 cells lines were
445	cultured in EX-CELL 420 serum-free media (Merck) supplemented with 100 U/mL penicillin and 100
446	$\mu g/mL$ streptomycin (Gibco) at 25 °C and 125 rpm. Cell cultures were scaled up to 2.5 L and the
447	supernatant was harvested 3 days later by centrifugation at $3,250 \text{ x}g$ for 20 min followed by filtration
448	through a 0.22 µm Steritop [™] filter unit. Cell supernatant was then concentrated by Tangential Flow
449	Filtration with a Pellicon 3 Ultracel 10 kDa membrane (Merck Millipore) and loaded onto a 10 mL
450	CaptureSelect [™] C-tagXL affinity column that had been equilibrated in Tris-buffered saline (TBS; 20 mM
451	Tris-HCl pH 7.4, 150 mM NaCl). The column was then washed with 10 column volumes (CV) of TBS
452	and protein eluted in 2 M MgCl ₂ supplemented with 20 mM Tris-HCl pH 7.4. Eluted protein fractions
453	were then pooled, concentrated and purified into TBS by size exclusion chromatography (SEC) using a
454	HiLoad 16/600 Superdex 75 or 200 pg column (Cytiva) and an ÄKTA Pure [™] Protein Purification
455	System (Cytiva).
456	
457	The RH5-Nt protein encoded residues F25-K140 followed by rat CD4 domains 3 and 4, a biotin acceptor

458 peptide and a C-terminal hexa-histidine tag ³³. The protein was expressed in Expi293 cells and purified by

King LDW et al.

459 immobilized metal affinity chromatography (IMAC) using Ni^{2+} resin followed by SEC, with protein 460 eluted into TBS as previously described ³³.

461

462 SDS-PAGE

463 Samples were prepared in 1 x Laemmli buffer with or without 1 x dithiothreitol (Biorad). Samples were

then heated for 10 min at 95 °C and loaded onto a precast NuPAGETM 4-12 % Bis-Tris polyacrylamide

465 gel in NuPAGE[™] MES SDS running buffer (Thermo Fisher Scientific). Electrophoresis was performed

466 at 200 V for 45 min and gels were stained overnight with Quick Coomassie stain (Protein Ark), destained

467 in distilled water and imaged using an iBright[™] FL1500 Imaging System (Thermo Fisher Scientific).

468

469 **Production of anti-RH5 monoclonal antibodies**

470 The isolation, expression and purification of the human anti-RH5 monoclonal antibodies (mAbs) used

471 here has previously been described ³¹. In brief, anti-RH5 mAbs were expressed by transient transfection

472 of Expi293 cells with the heavy and light chain plasmids at a 1:1 ratio (0.5 μg of each plasmid per mL of

473 culture). The supernatant was harvested 5-7 days later by centrifugation at 3,250 xg for 20 min, filtered

474 through a 0.22 μm filter and then loaded onto a 5 mL Protein G HP column equilibrated in TBS. The

475 Protein G column was washed with 10 CV of TBS and mAbs were eluted in 0.1 M glycine pH 2.7 and

476 neutralized with Tris-HCl pH 9.0. Eluted mAbs were then buffer exchanged into TBS pH 7.4 using 30

477 kDa Amicon Ultra-15 centrifugal filters (Millipore).

478

479 Conjugation of RH5.2-ST to HBsAg-SC VLPs

480 Design, expression and purification of HBsAg VLPs with an N-terminal SpyCatcher moiety on each

481 monomer unit (HBsAg-SC) have been previously reported in detail ²⁶. Soluble RH5.2-ST protein and

482 HBsAg-SC VLPs were thawed on ice and supplemented with 200 mM NaCl. While on ice, 0.01-0.1 M of

483 RH5.2-ST was added every 10 min to a fixed amount of HBsAg-SC until a final molar ratio of 1, 0.5,

484	0.25 or 0.1 of RH5.2-ST antigen to HBsAg-SC VLP was achieved; the reaction was then incubated
485	overnight at 4 °C. Conjugation reactions were then loaded onto a Superdex 200 10/300 Increase or
486	Superose 6 10/300 GL Increase SEC column (Cytiva) and purified into 20 mM Tris-HCl pH 7.4, 350 mM
487	NaCl. The SEC purification removed any free excess RH5.2-ST protein, thereby leaving the purified
488	conjugated RH5.2-VLPs (here each VLP is now composed of a mixture of monomer units of RH5.2-ST-
489	SC-HBsAg, i.e., those monomer units onto which the RH5.2-ST had conjugated, and also excess HBsAg-
490	SC monomer units onto which no RH5.2-ST had conjugated). The protein concentration of the purified
491	VLPs was measured using a Pierce TM BCA Protein Assay kit (Thermo Fisher). VLPs were then flash
492	frozen in liquid nitrogen and stored at -80 °C until use. Conjugation reactions were run on SDS-PAGE,
493	and conjugation efficiency (% of HBsAg-SC monomer units in the VLP conjugated to RH5.2-ST) was
494	assessed by densitometry.
495	
496	Negative staining transmission electron microscopy (TEM)
497	VLPs, at 0.1 mg/mL test concentration, were adsorbed onto 200 mesh formvar/carbon copper grids for 1-
498	2 min, washed with Milli-Q water and blotted with filter paper. Grids were then stained with 2 % uranyl
499	acetate for 10-30 s, air dried and imaged using a FEI Tecnai T12 transmission electron microscope.
500	
501	Rodent immunization studies
502	All mouse experiments and procedures were performed under the UK Animals (Scientific Procedures)
503	Act Project Licence (PPL PA7D20B85) and were approved by the University of Oxford Animal Welfare
504	and Ethical Review Body. Eight-week-old female BALB/c mice (Envigo RMS, UK) (N = 5-6 per group)
505	were immunized intramuscularly (i.m.) with 5 μ g Matrix-M TM adjuvant (Novavax) alone or 0.01-2 μ g test
506	antigen formulated with Matrix-M TM adjuvant on days 0, 21 and 42. Serum was harvested from blood
507	collected from mouse tail veins on day 20, day 41 and by cardiac puncture on day 56. Serum was then
508	stored at -80 °C.

5	n	0
J	υ	7

510	The rat immunization study was performed at Noble Life Sciences, Inc (Maryland, USA). Female Wistar
511	IGS rats (N=6 per group) between 150-200 g (8-12 weeks old) were immunized i.m. with 2 μ g antigen
512	formulated in 25 µg Matrix-M [™] adjuvant (Novavax) on days 0, 28 and 56. Serum was harvested from
513	the blood following retro-orbital bleeding on days -2, 14, 42 and cardiac puncture on day 70. Serum
514	samples were then frozen and shipped to the University of Oxford, UK for testing.
515	
516	Monoclonal antibodies
517	The R5.CT1 mAb was isolated from a single IgG ⁺ memory B cell in the peripheral blood mononuclear
518	cells of an RH5.1/AS01 $_{\rm B}$ human vaccinee using a full-length RH5 probe and methodology as described in
519	detail elsewhere ⁴⁷ ; The antibody genes were cloned into vectors encoding the human IgG1 backbone for
520	expression in HEK293F cells followed by purification. Production of the 2AC7, R5.016 and EBL040
521	mAbs has been described previously ^{31,32,48} .
522	
523	Monoclonal antibody ELISA
524	96-well flat-bottom NUNC Maxisorp plates were coated with 50 μ L (2 μ g/mL of antigen) RH5 Δ NLC-ST,
525	RH5.2-ST or RH5.2-VLP overnight at 4 °C. Plates were washed five times with PBS/Tween-20 (0.05%
526	v/v; PBS/T) and blocked with 200 μ L Blocker TM Casein in PBS (Thermo Fisher Scientific) for 1 h at RT.
527	The anti-RH5 human IgG1 mAbs used in this study have been reported previously ³¹ . An irrelevant
528	human IgG1 mAb was used as a negative control. Test mAbs were added in triplicate wells at 1 μ g/mL
529	(50 μL /well) and plates were incubated at RT for 1 h, washed in PBS/T and then incubated with 50 μL γ -
530	chain specific goat anti-human IgG-alkaline phosphatase (AP) (Thermo Fisher) at a 1/2000 dilution for 1
531	h at RT. Plates were washed, then developed with 100 μ L <i>p</i> -nitrophenylphosphate (pNPP) (Thermo
532	Fisher Scientific) substrate in 1 x diethanolamine buffer, read at 405 nm on an ELx800 absorbance
533	microplate reader (Biotek) and analysed with Gen5 software v3.11.

King LDW et al.

534

535 Standardized ELISAs

536 Mouse, rat or human anti-RH5.1, -RH5 Δ NL or -RH5Nt IgG ELISAs were performed on serum or

- 537 purified IgG samples using a standardized methodology, as previously described ^{18,49}. In brief, plates were
- 538 coated with 2 µg/mL test antigen in PBS overnight at 4 °C, washed in PBS/T and blocked for 1 h at RT
- 539 with 200 µL StartingBlock[™] or Blocker[™] Casein in PBS (Thermo Fisher Scientific). Serum or purified
- 540 IgG samples were diluted in blocking buffer, added to the plate and incubated for 1 h at RT, prior to
- 541 washing and incubation with a goat anti-mouse, -rat or -human-IgG-AP secondary antibody (1:2000) for
- 542 1 h. Plates were then developed as per the mAb ELISA. Arbitrary units (AU) were assigned to the
- 543 reciprocal dilution of the standard curve at which an optical density (OD) of 1 was observed. Using Gen5
- 544 ELISA software v3.11 the standard curve was used to assign AU to test samples and where possible,

545 calibration-free concentration analysis (CFCA) was used to convert these values into μ g/mL^{18,50}.

546

547 **RH5 peptide ELISAs**

548 Methodology for ELISA using biotinylated 20-mer peptides overlapping by 12 amino acids covering the

full-length RH5 sequence was reported in detail previously ¹⁸. RH5.1 and RH5-Nt protein (at $2 \mu g/mL$)

550 were adsorbed to 96-well NUNC-Immuno Maxisorp plates (Thermo Fisher Scientific) and test peptides

- 551 (at 10 µg/mL) were adsorbed to streptavidin plates (Pierce) overnight at 4 °C. Test purified human IgG
- samples and a negative pre-immunization control IgG, from VAC063 trial vaccinees ²¹, were normalized
- 553 to 100 μg/mL in BlockerTM Casein in PBS (Thermo Fisher Scientific) and added to triplicate wells
- 554 following blocking with Blocker[™] Casein in PBS. Blank test wells used blocking buffer only.
- 555 Antibodies were detected using goat anti-human IgG-AP (Sigma) and developed and analysed as per the
- 556 mAb ELISA. The R5.CT1 human mAb was tested in the same assay at $2 \mu g/mL$ concentration.

557

King LDW et al.

558 Anti-HBsAg endpoint ELISA

559 96-well flat-bottom NUNC Maxisorp plates were coated overnight at 4 °C with 0.5 mg/mL recombinant 560 HBsAg (BIO-RAD). Plates were washed with PBS/T, blocked in 5 % skimmed milk and test serum 561 samples were added in duplicate wells and diluted down the plate in a two-fold dilution series. Following 562 a 1 h incubation, plates were washed in PBS/T and incubated for 1 h with goat anti-mouse IgG-AP 563 (Merck). Plates were then developed as per the mAb ELISA. Endpoint titers were calculated by 564 determining the point at which the dilution curve intercepts the x-axis at an absorbance value 3 standard 565 deviations greater than the OD for a naïve mouse serum sample. 566 Assay of growth inhibition activity (GIA) 567 568 GIA assays were performed according to standardized methodology from the GIA Reference Centre, 569 NIAID/NIH, as previously described ⁵¹. In brief, total IgG was purified from serum using a 5mL HiTrap 570 Protein-G HP (Cytiva) column and antigen-specific IgG was purified using RH5.1 or RH5ΔNL coated 571 resin ^{52,53}. All samples were heat inactivated, depleted of anti-erythrocyte specific antibodies, buffer 572 exchanged into RPMI-1640 media and filter sterilized prior to being incubated at varying concentrations 573 with O+ erythrocytes and synchronized P. falciparum 3D7 clone trophozoites for 42 h at 37 °C ("one-574 cycle GIA"). All samples were tested in a two-fold dilution curve starting at a concentration of 5 mg/mL 575 and the final parasitemia was then quantified through biochemical detection of lactate dehydrogenase in 576 order to calculate % GIA. For the antigen reversal GIA assay, test antibodies were pre-incubated with the 577 indicated concentration of recombinant protein, which were dialyzed against RPMI-1640, in a 96-well plate for 45 min at RT followed by a 15 min incubation at 37 °C. Then, trophozoite parasites were added 578 579 to the plate to start the GIA assay as described above.

580

King LDW et al.

581 Statistical analysis

- 582 All data were analyzed using GraphPad Prism version 10.0.3 for Windows (GraphPad Software Inc.,
- 583 California, USA). All tests used were two-tailed and are described in the text. To analyze the GIA EC₅₀ an
- asymmetric logistic dose-response curve was fitted to GIA titration data with no constraints, and EC₅₀
- values were interpolated. To compare ELISA or EC₅₀ values across different groups of immunized mice
- 586 or rats a Kruskal-Wallis test with Dunn's multiple comparison test was performed. A value of P < 0.05
- 587 was considered significant.

King LDW *et al*.

588 Author Contributions

- 589 Conceived and performed experiments and/or analysed the data: LDWK, DP, JRB, HD, DQ, AML, SES,
- 590 DJP, AD, BGW, KMc, AR, CAR, VS, JS, CR-S, RAD, ASI, YZ, GG, JJ, YL, KMi, SJD.
- 591 Performed project management: ARN, RSM, CRK, AJB, LAS, RA, KS.
- 592 Contributed reagents, materials, and analysis tools: CC, AMM, IC, SJF, CAL, MH, SB.
- 593 Wrote the paper: LDWK, SJD.

594 Acknowledgments

595 The authors are grateful for the assistance of Julie Furze, Penelope Lane, Fay Nugent, Wendy Crocker,

596 Charlotte Hague, Daniel Alanine, Robert Ragotte, Darren Leneghan, Geneviève Labbé, Carolyn Nielsen,

597 Martino Bardelli, Jenny Bryant, Lana Strmecki and Matt Higgins (University of Oxford); Sally Pelling-

598 Deeves for arranging contracts (University of Oxford); Colleen Woods (PATH-MVI); Jenny Reimer

599 (Novavax); Ken Tucker, Timothy Phares, Jayne Christen, Cecille Browne and Vin Kotraiah (Leidos);

600 Robin Miller (USAID); and all the VAC063 trial participants.

601

602 This work was funded in part by the UK Medical Research Council (MRC) [MR/P001351/1] – this UK 603 funded award was part of the EDCTP2 programme supported by the European Union; the European 604 Union's Horizon 2020 research and innovation programme under a grant agreement for OptiMalVax 605 (733273); the PATH Malaria Vaccine Initiative; the UK MRC Confidence in Concept (CiC) Tropical 606 Infectious Disease Consortium [MC PC 15040]; and the Wellcome Trust through a Translation Award 607 [205981/Z/17/Z]. This work, as well as the VAC063 clinical trial, was made possible in part through 608 support provided by the Infectious Disease Division, Bureau for Global Health, United States Agency for 609 International Development (USAID), under the terms of the Malaria Vaccine Development Program 610 (MVDP) (AID-OAA-C-15-00071) for which Leidos Inc. was the prime contractor, and under the terms of 611 GH-BAA-2018-Addendum03 (7200AA20C00017), for which PATH is the prime contractor. The GIA

612	assays were supported in part by the Division of Intramural Research of the National Institute of Allergy
613	and Infectious Diseases (NIAID), National Institutes of Health (NIH), and by an Interagency Agreement
614	(AID-GH-T-15-00001) between the USAID MVDP and NIAID, NIH. The findings and conclusions are
615	those of the authors and do not necessarily represent the official position of USAID. This work was also
616	supported in part by the National Institute for Health Research (NIHR) Oxford Biomedical Research
617	Centre (BRC) and NHS Blood & Transplant (NHSBT; who provided material), the views expressed are
618	those of the authors and not necessarily those of the NIHR or the Department of Health and Social Care
619	or NHSBT. GSK had the opportunity to review the manuscript but content is the sole responsibility of the
620	authors. JS held a Wellcome/African Academy of Sciences DELTAS Africa Grant Master's Studentship
621	[DEL-15-007: Awandare]. BGW held a UK MRC PhD Studentship [MR/N013468/1]. SB and SJD are
622	Jenner Investigators and SJD held a Wellcome Trust Senior Fellowship [106917/Z/15/Z].
623	
624	Conflict of Interest Statement
625	SJD is an inventor on patent applications relating to RH5 malaria vaccines and antibodies; is a co-founder
625 626	SJD is an inventor on patent applications relating to RH5 malaria vaccines and antibodies; is a co-founder of and shareholder in SpyBiotech; and has been a consultant to GSK on malaria vaccines.
625 626 627	SJD is an inventor on patent applications relating to RH5 malaria vaccines and antibodies; is a co-founder of and shareholder in SpyBiotech; and has been a consultant to GSK on malaria vaccines. AMM has been a consultant to GSK on malaria vaccines; and has an immediate family member who is an
625 626 627 628	SJD is an inventor on patent applications relating to RH5 malaria vaccines and antibodies; is a co-founder of and shareholder in SpyBiotech; and has been a consultant to GSK on malaria vaccines. AMM has been a consultant to GSK on malaria vaccines; and has an immediate family member who is an inventor on patent applications relating to RH5 malaria vaccines and antibodies and is a co-founder of and
 625 626 627 628 629 	SJD is an inventor on patent applications relating to RH5 malaria vaccines and antibodies; is a co-founder of and shareholder in SpyBiotech; and has been a consultant to GSK on malaria vaccines. AMM has been a consultant to GSK on malaria vaccines; and has an immediate family member who is an inventor on patent applications relating to RH5 malaria vaccines and antibodies and is a co-founder of and shareholder in SpyBiotech.
 625 626 627 628 629 630 	 SJD is an inventor on patent applications relating to RH5 malaria vaccines and antibodies; is a co-founder of and shareholder in SpyBiotech; and has been a consultant to GSK on malaria vaccines. AMM has been a consultant to GSK on malaria vaccines; and has an immediate family member who is an inventor on patent applications relating to RH5 malaria vaccines and antibodies and is a co-founder of and shareholder in SpyBiotech. MH is an inventor on patents relating to peptide targeting via spontaneous amide bond formation, and is a
 625 626 627 628 629 630 631 	 SJD is an inventor on patent applications relating to RH5 malaria vaccines and antibodies; is a co-founder of and shareholder in SpyBiotech; and has been a consultant to GSK on malaria vaccines. AMM has been a consultant to GSK on malaria vaccines; and has an immediate family member who is an inventor on patent applications relating to RH5 malaria vaccines and antibodies and is a co-founder of and shareholder in SpyBiotech. MH is an inventor on patents relating to peptide targeting via spontaneous amide bond formation, and is a co-founder of and shareholder in SpyBiotech.
625 626 627 628 629 630 631 632	 SJD is an inventor on patent applications relating to RH5 malaria vaccines and antibodies; is a co-founder of and shareholder in SpyBiotech; and has been a consultant to GSK on malaria vaccines. AMM has been a consultant to GSK on malaria vaccines; and has an immediate family member who is an inventor on patent applications relating to RH5 malaria vaccines and antibodies and is a co-founder of and shareholder in SpyBiotech. MH is an inventor on patents relating to peptide targeting via spontaneous amide bond formation, and is a co-founder of and shareholder in SpyBiotech. SB is an inventor on patent applications relating to vaccines made using spontaneous amide bond
 625 626 627 628 629 630 631 632 633 	SJD is an inventor on patent applications relating to RH5 malaria vaccines and antibodies; is a co-founder of and shareholder in SpyBiotech; and has been a consultant to GSK on malaria vaccines. AMM has been a consultant to GSK on malaria vaccines; and has an immediate family member who is an inventor on patent applications relating to RH5 malaria vaccines and antibodies and is a co-founder of and shareholder in SpyBiotech. MH is an inventor on patents relating to peptide targeting via spontaneous amide bond formation, and is a co-founder of and shareholder in SpyBiotech. SB is an inventor on patent applications relating to vaccines made using spontaneous amide bond formation and is a co-founder of, shareholder in and employee of SpyBiotech.
 625 626 627 628 629 630 631 632 633 634 	SJD is an inventor on patent applications relating to RH5 malaria vaccines and antibodies; is a co-founder of and shareholder in SpyBiotech; and has been a consultant to GSK on malaria vaccines. AMM has been a consultant to GSK on malaria vaccines; and has an immediate family member who is an inventor on patent applications relating to RH5 malaria vaccines and antibodies and is a co-founder of and shareholder in SpyBiotech. MH is an inventor on patents relating to peptide targeting via spontaneous amide bond formation, and is a co-founder of and shareholder in SpyBiotech. SB is an inventor on patent applications relating to vaccines made using spontaneous amide bond formation and is a co-founder of, shareholder in and employee of SpyBiotech. JJ is an inventor on patent applications relating to vaccines made using spontaneous amide bond
 625 626 627 628 629 630 631 632 633 634 635 	 SJD is an inventor on patent applications relating to RH5 malaria vaccines and antibodies; is a co-founder of and shareholder in SpyBiotech; and has been a consultant to GSK on malaria vaccines. AMM has been a consultant to GSK on malaria vaccines; and has an immediate family member who is an inventor on patent applications relating to RH5 malaria vaccines and antibodies and is a co-founder of and shareholder in SpyBiotech. MH is an inventor on patents relating to peptide targeting via spontaneous amide bond formation, and is a co-founder of and shareholder in SpyBiotech. SB is an inventor on patent applications relating to vaccines made using spontaneous amide bond formation and is a co-founder of, shareholder in and employee of SpyBiotech. JJ is an inventor on patent applications relating to vaccines made using spontaneous amide bond formation and is a co-founder of and shareholder in SpyBiotech.

King LDW et al.

- 636 RAD is an inventor on patent applications relating to vaccines made using spontaneous amide bond
- 637 formation and shareholder in SpyBiotech.
- 638 LDWK, JRB, DQ, AML, SES, BGW, KMc, IC, SJF and DP are inventors on patent applications relating
- 639 to RH5 malaria vaccines and/or antibodies.
- 640 All other authors have declared that no conflict of interest exists.
- 641

642 Data and Materials Availability

643 Requests for materials should be addressed to the corresponding author.

King LDW et al.

644 **References**

- 645 1. World Health Organization. World Malaria Report, (2022).
- 646 2. Datoo, M.S., Natama, M.H., Some, A., Traore, O., Rouamba, T., Bellamy, D., Yameogo, P.,
- 647 Valia, D., Tegneri, M., Ouedraogo, F., et al. (2021). Efficacy of a low-dose candidate malaria
- vaccine, R21 in adjuvant Matrix-M, with seasonal administration to children in Burkina Faso: a
 randomised controlled trial. *Lancet* 397, 1809-1818.
- 650 3. Rts, S.C.T.P. (2015). Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a

booster dose in infants and children in Africa: final results of a phase 3, individually randomised,
controlled trial. *Lancet* 386, 31-45.

- 4. Dicko, A., Ouedraogo, J.B., Zongo, I., Sagara, I., Cairns, M., Yerbanga, R.S., Issiaka, D.,
- Zoungrana, C., Sidibe, Y., Tapily, A., *et al.* (2023). Seasonal vaccination with RTS,S/AS01(E)
 vaccine with or without seasonal malaria chemoprevention in children up to the age of 5 years in
- Burkina Faso and Mali: a double-blind, randomised, controlled, phase 3 trial. *Lancet Infect Dis*.
- 5. Chandramohan, D., Zongo, I., Sagara, I., Cairns, M., Yerbanga, R.S., Diarra, M., Nikiema, F.,
- Tapily, A., Sompougdou, F., Issiaka, D., *et al.* (2021). Seasonal Malaria Vaccination with or
 without Seasonal Malaria Chemoprevention. *N Engl J Med* 385, 1005-1017.
- 660 6. Meremikwu, M.M., Donegan, S., Sinclair, D., Esu, E., and Oringanje, C. (2012). Intermittent
 661 preventive treatment for malaria in children living in areas with seasonal transmission. *Cochrane*662 *Database Syst Rev* 2012, CD003756.
- 7. Topazian, H.M., Schmit, N., Gerard-Ursin, I., Charles, G.D., Thompson, H., Ghani, A.C., and
 Winskill, P. (2023). Modelling the relative cost-effectiveness of the RTS,S/AS01 malaria vaccine
 compared to investment in vector control or chemoprophylaxis. *Vaccine* 41, 3215-3223.
- B. Draper, S.J., Sack, B.K., King, C.R., Nielsen, C.M., Rayner, J.C., Higgins, M.K., Long, C.A., and
 Seder, R.A. (2018). Malaria Vaccines: Recent Advances and New Horizons. *Cell Host Microbe*24, 43-56.
- 669 9. Wright, G.J., and Rayner, J.C. (2014). Plasmodium falciparum erythrocyte invasion: combining
 670 function with immune evasion. *PLoS Pathog* 10, e1003943.
- 10. Douglas, A.D., Williams, A.R., Illingworth, J.J., Kamuyu, G., Biswas, S., Goodman, A.L.,
- Wyllie, D.H., Crosnier, C., Miura, K., Wright, G.J., *et al.* (2011). The blood-stage malaria antigen
- 673 PfRH5 is susceptible to vaccine-inducible cross-strain neutralizing antibody. *Nat Commun* 2, 601.
- 11. Ragotte, R.J., Higgins, M.K., and Draper, S.J. (2020). The RH5-CyRPA-Ripr Complex as a
- 675 Malaria Vaccine Target. *Trends Parasitol* 36, 545-559.

676	12.	Scally, S.W., Triglia, T., Evelyn, C., Seager, B.A., Pasternak, M., Lim, P.S., Healer, J.,
677		Geoghegan, N.D., Adair, A., Tham, W.H., et al. (2022). PCRCR complex is essential for invasion
678		of human erythrocytes by Plasmodium falciparum. Nature microbiology 7, 2039-2053.
679	13.	Farrell, B., Alam, N., Hart, M.N., Jamwal, A., Ragotte, R.J., Walters-Morgan, H., Draper, S.J.,
680		Knuepfer, E., and Higgins, M.K. (2023). The PfRCR complex bridges malaria parasite and
681		erythrocyte during invasion. Nature.
682	14.	Crosnier, C., Bustamante, L.Y., Bartholdson, S.J., Bei, A.K., Theron, M., Uchikawa, M., Mboup,
683		S., Ndir, O., Kwiatkowski, D.P., Duraisingh, M.T., et al. (2011). Basigin is a receptor essential
684		for erythrocyte invasion by Plasmodium falciparum. Nature 480, 534-537.
685	15.	Volz, J.C., Yap, A., Sisquella, X., Thompson, J.K., Lim, N.T., Whitehead, L.W., Chen, L.,
686		Lampe, M., Tham, W.H., Wilson, D., et al. (2016). Essential Role of the PfRh5/PfRipr/CyRPA
687		Complex during Plasmodium falciparum Invasion of Erythrocytes. Cell Host Microbe 20, 60-71.
688	16.	Galaway, F., Yu, R., Constantinou, A., Prugnolle, F., and Wright, G.J. (2019). Resurrection of the
689		ancestral RH5 invasion ligand provides a molecular explanation for the origin of P. falciparum
690		malaria in humans. PLoS Biol 17, e3000490.
691	17.	Douglas, A.D., Baldeviano, G.C., Lucas, C.M., Lugo-Roman, L.A., Crosnier, C., Bartholdson,
692		S.J., Diouf, A., Miura, K., Lambert, L.E., Ventocilla, J.A., et al. (2015). A PfRH5-Based Vaccine
693		Is Efficacious against Heterologous Strain Blood-Stage Plasmodium falciparum Infection in
694		Aotus Monkeys. Cell Host Microbe 17, 130-139.
695	18.	Payne, R.O., Silk, S.E., Elias, S.C., Miura, K., Diouf, A., Galaway, F., de Graaf, H., Brendish,
696		N.J., Poulton, I.D., Griffiths, O.J., et al. (2017). Human vaccination against RH5 induces
697		neutralizing antimalarial antibodies that inhibit RH5 invasion complex interactions. JCI Insight 2,
698		96381.
699	19.	Silk, S.E., Kalinga, W.F., Mtaka, I.M., Lilolime, N.S., Mpina, M., Milando, F., Ahmed, S., Diouf,
700		A., Mkwepu, F., Simon, B., et al. (2023). Superior antibody immunogenicity of a viral-vectored
701		RH5 blood-stage malaria vaccine in Tanzanian infants as compared to adults. Med.
702	20.	Jin, J., Tarrant, R.D., Bolam, E.J., Angell-Manning, P., Soegaard, M., Pattinson, D.J., Dulal, P.,
703		Silk, S.E., Marshall, J.M., Dabbs, R.A., et al. (2018). Production, quality control, stability, and
704		potency of cGMP-produced Plasmodium falciparum RH5.1 protein vaccine expressed in
705		Drosophila S2 cells. NPJ Vaccines 3, 32.
706	21.	Minassian, A.M., Silk, S.E., Barrett, J.R., Nielsen, C.M., Miura, K., Diouf, A., Loos, C., Fallon,
707		J.K., Michell, A.R., White, M.T., et al. (2021). Reduced blood-stage malaria growth and immune
708		correlates in humans following RH5 vaccination. Med 2, 701-719.

709	22.	Douglas, A.D., Baldeviano, G.C., Jin, J., Miura, K., Diouf, A., Zenonos, Z.A., Ventocilla, J.A.,
710		Silk, S.E., Marshall, J.M., Alanine, D.G.W., et al. (2019). A defined mechanistic correlate of
711		protection against Plasmodium falciparum malaria in non-human primates. Nat Commun 10,
712		1953.
713	23.	Foquet, L., Schafer, C., Minkah, N.K., Alanine, D.G.W., Flannery, E.L., Steel, R.W.J., Sack,
714		B.K., Camargo, N., Fishbaugher, M., Betz, W., et al. (2018). Plasmodium falciparum Liver Stage
715		Infection and Transition to Stable Blood Stage Infection in Liver-Humanized and Blood-
716		Humanized FRGN KO Mice Enables Testing of Blood Stage Inhibitory Antibodies
717		(Reticulocyte-Binding Protein Homolog 5) In Vivo. Front Immunol 9, 524.
718	24.	Brune, K.D., Leneghan, D.B., Brian, I.J., Ishizuka, A.S., Bachmann, M.F., Draper, S.J., Biswas,
719		S., and Howarth, M. (2016). Plug-and-Display: decoration of Virus-Like Particles via isopeptide
720		bonds for modular immunization. Sci Rep 6, 19234.
721	25.	Brune, K.D., and Howarth, M. (2018). New Routes and Opportunities for Modular Construction
722		of Particulate Vaccines: Stick, Click, and Glue. Front Immunol 9, 1432.
723	26.	Marini, A., Zhou, Y., Li, Y., Taylor, I.J., Leneghan, D.B., Jin, J., Zaric, M., Mekhaiel, D., Long,
724		C.A., Miura, K., et al. (2019). A Universal Plug-and-Display Vaccine Carrier Based on HBsAg
725		VLP to Maximize Effective Antibody Response. Frontiers in Immunology 10.
726	27.	Wright, K.E., Hjerrild, K.A., Bartlett, J., Douglas, A.D., Jin, J., Brown, R.E., Illingworth, J.J.,
727		Ashfield, R., Clemmensen, S.B., de Jongh, W.A., et al. (2014). Structure of malaria invasion
728		protein RH5 with erythrocyte basigin and blocking antibodies. Nature 515, 427-430.
729	28.	Hjerrild, K.A., Jin, J., Wright, K.E., Brown, R.E., Marshall, J.M., Labbe, G.M., Silk, S.E.,
730		Cherry, C.J., Clemmensen, S.B., Jorgensen, T., et al. (2016). Production of full-length soluble
731		Plasmodium falciparum RH5 protein vaccine using a Drosophila melanogaster Schneider 2 stable
732		cell line system. Sci Rep 6, 30357.
733	29.	Jin, J., Hjerrild, K.A., Silk, S.E., Brown, R.E., Labbe, G.M., Marshall, J.M., Wright, K.E.,
734		Bezemer, S., Clemmensen, S.B., Biswas, S., et al. (2017). Accelerating the clinical development
735		of protein-based vaccines for malaria by efficient purification using a four amino acid C-terminal
736		'C-tag'. Int J Parasitol 47, 435-446.
737	30.	Campeotto, I., Goldenzweig, A., Davey, J., Barfod, L., Marshall, J.M., Silk, S.E., Wright, K.E.,
738		Draper, S.J., Higgins, M.K., and Fleishman, S.J. (2017). One-step design of a stable variant of the
739		malaria invasion protein RH5 for use as a vaccine immunogen. Proc Natl Acad Sci USA 114,
740		998-1002.

741	31	Alanine D.G.W. Quinkert D. Kumarasingha R. Mehmood S. Donnellan F.R. Minkah N.K.
742	511	Dadonaite B Diouf A Galaway F Silk S E <i>et al.</i> (2019) Human Antibodies that Slow
743		Ervthrocyte Invasion Potentiate Malaria-Neutralizing Antibodies <i>Cell</i> 178, 216-228
744	32	Douglas A D Williams A R Knuepfer E Illingworth LI Furze I M Crosnier C
745	52.	Choudhary P Bustamante L Y Zakutansky S E Awuah D K <i>et al.</i> (2014) Neutralization of
746		Plasmodium falciparum Merozoites by Antibodies against PfRH5 <i>J Immunol</i> 192 245-258
747	33	Galaway F. Drought I.G. Fala M. Cross N. Kemp A.C. Rayner, I.C. and Wright G.I.
748	55.	(2017) P113 is a merozoite surface protein that binds the N terminus of Plasmodium falciparum
749		RH5 Nat Commun 8 14333
750	34	Comparts I Galaway E Mahmood S Barfod I K Quinkart D Kotraiah V Phares
751	54.	T W Wright K E Spijders A P Draper S L at al. (2020). The Structure of the Cysteine Pich
751		Domain of Plasmodium folgingrum P113 Identifies the Location of the PH5 Pinding Site <i>mPi</i> o
752		11
755	25	11. Dullan HE Sondars DD Dans MC Jonsdottin TV Dislar DT Joshan O Dalman CS
754	55.	Burlen, H.E., Sanders, P.R., Dans, M.G., Jonsdouri, T.K., Rigiar, D.T., Looker, O., Painier, C.S.,
755		Kouskousis, B., Charnaud, S.C., Trigha, T., <i>et al.</i> (2022). The Plasmodium faiciparum
/56		parasitophorous vacuole protein P113 interacts with the parasite protein export machinery and
757		maintains normal vacuole architecture. <i>Mol Microbiol</i> 117, 1245-1262.
758	36.	Triglia, T., Scally, S.W., Seager, B.A., Pasternak, M., Dagley, L.F., and Cowman, A.F. (2023).
759		Plasmepsin X activates the PCRCR complex of Plasmodium falciparum by processing PfRh5 for
760		erythrocyte invasion. Nat Commun 14, 2219.
761	37.	Jamwal, A., Constantin, C.F., Hirschi, S., Henrich, S., Bildl, W., Fakler, B., Draper, S.J., Schulte,
762		U., and Higgins, M.K. (2023). Erythrocyte invasion-neutralising antibodies prevent Plasmodium
763		falciparum RH5 from binding to basigin-containing membrane protein complexes. eLife 12.
764	38.	Olshefsky, A., Richardson, C., Pun, S.H., and King, N.P. (2022). Engineering Self-Assembling
765		Protein Nanoparticles for Therapeutic Delivery. Bioconjugate chemistry 33, 2018-2034.
766	39.	Mohsen, M.O., and Bachmann, M.F. (2022). Virus-like particle vaccinology, from bench to
767		bedside. Cell Mol Immunol 19, 993-1011.
768	40.	Mangold, C.M., and Streeck, R.E. (1993). Mutational analysis of the cysteine residues in the
769		hepatitis B virus small envelope protein. J Virol 67, 4588-4597.
770	41.	Meireles, L.C., Marinho, R.T., and Van Damme, P. (2015). Three decades of hepatitis B control
771		with vaccination. World J Hepatol 7, 2127-2132.
772	42.	Healer, J., Thompson, J.K., Mackwell, K.L., Browne, C.D., Seager, B.A., Ngo, A., Lowes, K.N.,
773		Silk, S.E., Pulido, D., King, L.D.W., et al. (2022). RH5.1-CyRPA-Ripr antigen combination

774		vaccine shows little improvement over RH5.1 in a preclinical setting. Front Cell Infect Microbiol
775		12, 1049065.
776	43.	Ragotte, R.J., Pulido, D., Lias, A.M., Quinkert, D., Alanine, D.G.W., Jamwal, A., Davies, H.,
777		Nacer, A., Lowe, E.D., Grime, G.W., et al. (2022). Heterotypic interactions drive antibody
778		synergy against a malaria vaccine candidate. Nat Commun 13, 933.
779	44.	Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool,
780		K., Bates, R., Zidek, A., Potapenko, A., et al. (2021). Highly accurate protein structure prediction
781		with AlphaFold. Nature 596, 583-589.
782	45.	Varadi, M., Anyango, S., Deshpande, M., Nair, S., Natassia, C., Yordanova, G., Yuan, D., Stroe,
783		O., Wood, G., Laydon, A., et al. (2022). AlphaFold Protein Structure Database: massively
784		expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic
785		Acids Res 50, D439-D444.
786	46.	Meng, E.C., Goddard, T.D., Pettersen, E.F., Couch, G.S., Pearson, Z.J., Morris, J.H., and Ferrin,
787		T.E. (2023). UCSF ChimeraX: Tools for Structure Building and Analysis. Protein science : a
788		publication of the Protein Society, e4792.
789	47.	Barrett, J.R., Pipini, D., Wright, N.D., Cooper, A.J.R., Gorini, G., Quinkert, D., Lias, A.M.,
790		Davies, H., Rigby, C., Aleshnick, M., et al. (2023). Analysis of the Diverse Antigenic Landscape
791		of the Malaria Invasion Protein RH5 Identifies a Potent Vaccine-Induced Human Public Antibody
792		Clonotype. bioRxiv, 2023.2010.2004.560576.
793	48.	Rijal, P., Elias, S.C., Machado, S.R., Xiao, J., Schimanski, L., O'Dowd, V., Baker, T., Barry, E.,
794		Mendelsohn, S.C., Cherry, C.J., et al. (2019). Therapeutic Monoclonal Antibodies for Ebola
795		Virus Infection Derived from Vaccinated Humans. Cell reports 27, 172-186 e177.
796	49.	Miura, K., Orcutt, A.C., Muratova, O.V., Miller, L.H., Saul, A., and Long, C.A. (2008).
797		Development and characterization of a standardized ELISA including a reference serum on each
798		plate to detect antibodies induced by experimental malaria vaccines. Vaccine 26, 193-200.
799	50.	Williams, A.R., Douglas, A.D., Miura, K., Illingworth, J.J., Choudhary, P., Murungi, L.M.,
800		Furze, J.M., Diouf, A., Miotto, O., Crosnier, C., et al. (2012). Enhancing Blockade of
801		Plasmodium falciparum Erythrocyte Invasion: Assessing Combinations of Antibodies against
802		PfRH5 and Other Merozoite Antigens. PLoS Pathog 8, e1002991.
803	51.	Malkin, E.M., Diemert, D.J., McArthur, J.H., Perreault, J.R., Miles, A.P., Giersing, B.K., Mullen,
804		G.E., Orcutt, A., Muratova, O., Awkal, M., et al. (2005). Phase 1 clinical trial of apical membrane
805		antigen 1: an asexual blood-stage vaccine for Plasmodium falciparum malaria. Infect Immun 73,
806		3677-3685.

King LDW et al.

807	52.	Miura, K., Zhou, H., Moretz, S.E., Diouf, A., Thera, M.A., Dolo, A., Doumbo, O., Malkin, E.,
808		Diemert, D., Miller, L.H., et al. (2008). Comparison of biological activity of human anti-apical
809		membrane antigen-1 antibodies induced by natural infection and vaccination. J Immunol 181,
810		8776-8783.
811	53.	Willcox, A.C., Huber, A.S., Diouf, A., Barrett, J.R., Silk, S.E., Pulido, D., King, L.D.W.,
812		Alanine, D.G.W., Minassian, A.M., Diakite, M., et al. (2021). Antibodies from malaria-exposed
813		Malians generally interact additively or synergistically with human vaccine-induced RH5

814 antibodies. *Cell Rep Med* 2, 100326.

815

King LDW et al.

816 Figure Legends

Figure 1. Assessment of vaccine-induced human anti-RH5.1 antibody targets.

- 818 (A) AlphaFold model (#AF-Q8IFM5-F1) of the full-length RH5 molecule on which the RH5.1 protein
- (amino acids [aa] E26-Q526) vaccine 20 was based. The structured alpha-helical core ("RH5 Δ NLC") is
- 820 shown in light blue, whilst the regions of predicted disorder include: i) the linear N-terminus (RH5-Nt; aa
- E26-Y139; orange); the intrinsic loop (aa N248-M296; purple); and small C-terminus (aa D507-Q526;
- 822 cyan) ²⁷. (**B**) Serum IgG antibody titers in RH5.1/AS01_B vaccinees as measured by ELISA against
- 823 recombinant RH5.1, RH5-Nt and RH5ΔNL proteins in arbitrary units (AU). Vaccinees received three
- doses of 2, 10 or 50 μg RH5.1 formulated in AS01_B adjuvant at monthly intervals (2-2-2, red, N=12; 10-
- 10-10, blue, N=27; 50-50-50, green, N=9) or a "delayed-fractional regimen" of two doses of 50 μg RH5.1

at 0 and 1 months and a third dose of 10 µg RH5.1 at 6 months (50-50---10, purple, N=12). Individual

- 827 responses are shown as measured 2-4 weeks post-third vaccination, with boxes indicating minimum,
- 828 maximum and median. (C) Sera from volunteers receiving the 10-10-10 regimen of RH5.1/AS01_B (N=15)
- 829 were diluted 1:100 and tested against linear overlapping peptides spanning the RH5 vaccine insert,
- 830 colour-coded as per panel (A). Median, interquartile range (IQR), and range are shown for each peptide.
- (**D**) Nine pooled total IgGs from the VAC063 study were tested by GIA with or without the indicated
- 832 recombinant protein in two (RH5-Nt) or three (RH5.1 and RH5ΔNL) independent assays. The total IgGs
- 833 were tested in a range from 3 to 9 mg/mL, at which each IgG showed ~60-70% GIA on average (in the
- absence of protein). In each assay, % GIA Reversal was calculated as 100 x (1 % GIA with protein / %
- GIA without protein), and an average % GIA Reversal from two or three assays in individual IgGs
- 836 (symbols) are shown with the median (bar) of the nine test IgGs. (E) In vitro GIA of RH5.1-specific or
- 837 RH5ΔNL-specific IgG affinity-purified from a pool of human sera collected two weeks post-final
- 838 vaccination with RH5.1/AS01_B. The EC₅₀ (concentration of antigen-specific polyclonal IgG that gives
- 50% GIA, dashed line) was calculated by non-linear regression: RH5.1, r²=0.98, N=19; RH5 Δ NL,
- 840 $r^2=0.99$, N=20).

King LDW et al.

841

Figure 2. Expression and immunogenicity testing of SpyTagged-RH5ΔNLC constructs.

843 (A) RH5 vaccine constructs based on P. falciparum 3D7 sequences. All have an N-terminal Drosophila 844 BiP secretion signal peptide (SP; which is cleaved off during expression) and end with a C-terminal C-tag 845 for affinity purification. Constructs with a SpyTag (ST) included a flexible (GSG)₃ linker preceding the 846 ST to facilitate epitope accessibility once conjugated to a VLP bearing SpyCatcher. The predicted 847 molecular weight (MW) of each construct based on the primary sequence and the relevant sequences of 848 RH5 N-term, loop and C-term are shown. (B) Non-reduced (NR) and reduced (R) SDS-PAGE gel of affinity and SEC purified RH5.1, RH5ΔNL, RH5ΔNLC-ST and RH5ΔNLC^{HS1}-ST proteins. (C) Final 849 850 yield of RH5 protein (in mg) purified from one liter of Drosophila S2 stable cell line supernatant. Bars 851 show the mean yield and error bars the range from N=3 independent purification campaigns for each 852 protein. (**D**) BALB/c mice (N=6 per group) were immunized intramuscularly with three 2 µg doses (on days 0, 21 and 42) of RH5∆NL, RH5∆NLC-ST or RH5∆NLC^{HS1}-ST, all formulated in Matrix-MTM 853 854 adjuvant. Anti-RH5 (full-length RH5.1) IgG titers were measured in the serum by ELISA after dose 1 (day 20) and dose 3 (day 70). Each point represents a single mouse and the line the median. Analyses 855 using Kruskal-Wallis test with Dunn's multiple comparison test across the three groups at each time-856 857 point; *P < 0.05. (E) A single-cycle in vitro GIA assay against 3D7 clone P. falciparum parasites was 858 performed with total purified IgG from pooled mouse sera (N=6 mice pooled per group). GIA is plotted 859 against the anti-RH5 (full-length RH5.1) titer measured by ELISA in each purified total IgG to assess 860 functional antibody quality, i.e., GIA per unit anti-RH5.1 IgG. Data show titration curve for each sample, 861 with points showing the mean and range of N=3 replicates per test condition. 862

863 Figure 3. Production and immunogenicity testing of the RH5.2-VLP vaccine candidate.

864 (A) Reducing SDS-PAGE gel of HBsAg-SC VLP and RH5.2-ST protein. These proteins were conjugated

together in a 1:1 molar ratio. The resulting RH5.2-VLP was SEC purified and is run in the final lane. (B)

King LDW et al.

866	BALB/c mice (N=6 per group) were immunized intramuscularly with three doses of RH5.2-ST protein
867	("RH5.2") or RH5.2-VLP on days 0, 21 and 42 either with (closed symbols) or without (open symbols)
868	Matrix-M TM (MM) adjuvant. Dosing of the RH5.2-VLP was adjusted in each case to deliver the same
869	molar amount of RH5.2 antigen as the soluble protein comparator (1, 0.1 or 0.01 μ g). Anti-RH5 (full-
870	length RH5.1) IgG titers were measured in the serum by ELISA after three doses at day 56. Each point
871	represents a single mouse and the line the median. (C) BALB/c mice (N=6 per group) were immunized
872	intramuscularly with three doses of RH5.1 protein, RH5.2-ST protein ("RH5.2") or RH5.2-VLP on days
873	0, 21 and 42. All vaccines used a total dose of 16 ng formulated in Matrix-M TM (MM) adjuvant. Anti-
874	RH5 (full-length RH5.1) IgG titers were measured in the serum by ELISA after three doses at day 56.
875	Each point represents a single mouse and the line the median. (D) Reducing SDS-PAGE gel as in panel
876	(A) but showing RH5.2-VLP produced by conjugating RH5.2-ST and HBsAg-SC VLP components at the
877	indicated molar ratios (Mr). (E) BALB/c mice (N=6 per group) were immunized intramuscularly with
878	three doses of RH5.2-VLP, produced using the indicated molar ratios of RH5.2-ST to HBsAg-SC (0.1:1,
879	0.25:1, 0.5:1 and 1:1), on days 0, 21 and 42. Dosing was adjusted in each case to deliver the same molar
880	amount of RH5.2 antigen (10 ng); total RH5.2-VLP dose = 232, 52, 40 and 23 ng, respectively. All
881	vaccines were formulated in Matrix-M TM adjuvant. Anti-RH5 (full-length RH5.1) IgG titers and (F) anti-
882	HBsAg IgG titers were measured in the serum by ELISA after three doses at day 56. Each point
883	represents a single mouse and the line the median. (G) Negatively-stained TEM image of HBsAg-SC
884	VLP starting material and RH5.2-VLP vaccine made using the 0.25:1 molar ratio (Mr). Scale bar 200 nm.
885	
886	Figure 4. Functional immunogenicity testing of RH5.1, RH5.2 and the RH5.2-VLP in rats
887	(A) Wistar rats (N=6 per group) were immunized intramuscularly with three doses of RH5.1 protein,
888	RH5.2-ST ("RH5.2") protein or RH5.2-VLP on days 0, 28 and 56. All vaccines used a total dose of 2 μ g
889	formulated in Matrix-M TM adjuvant. Anti-RH5 (full-length RH5.1) IgG titers were measured in the serum

by ELISA after each dose on days 14, 42 and 70, respectively for Doses 1-3. Each point represents a

891	single rat and the line the median; N=5 for Dose 3 of RH5.2-VLP as a single rat was euthanized after a
892	problem with a study-related procedure. Analysis using Kruskal-Wallis test with Dunn's multiple
893	comparison test across the three vaccine groups with each Dose result analyzed separately; $**P < 0.01$.
894	(B) A single-cycle in vitro GIA assay against 3D7 clone P. falciparum parasites was performed with total
895	IgG purified from serum from each vaccinated rat post-final immunization (N=5-6 per group). Total IgG
896	was titrated in the assay, and the concentration in mg/mL required to achieve 50 $\%$ GIA (EC ₅₀) was
897	interpolated. Data show the EC_{50} for each rat and the line the median. Analysis using Kruskal-Wallis test
898	with Dunn's multiple comparison test; $**P < 0.01$. (C) GIA data plotted against the anti-RH5.1 IgG
899	concentration measured by quantitative ELISA in each purified total IgG to assess functional antibody
900	quality, i.e., GIA per μ g anti-RH5.1 IgG. A non-linear regression curve is shown for all samples
901	combined in each vaccine group (RH5.1: r ² =0.75, N=144; RH5.2: r ² =0.93, N=143; RH5.2-VLP: r ² =0.96,
902	N=120). The dashed line indicates 50 % GIA. (D) The concentration of RH5.1-specific IgG in μ g/mL
903	required to achieve 50 % GIA (EC $_{50}$) was interpolated by non-linear regression for each individual rat
904	from the data in (C). Data show the EC_{50} for each rat and the line the median. Analysis using Kruskal-
905	Wallis test with Dunn's multiple comparison test; $*P < 0.05$, $**P < 0.01$. (E) Ratio of the serum IgG
906	ELISA response as measured using the RH5.1 and RH5 Δ NL proteins after the first and third
907	vaccinations. Data shown for each rat (N=5-6 per group) and the line the median. (F) GIA data plotted
908	against the anti-RH5ΔNL IgG titer measured by ELISA with arbitrary unit (AU) readout in each purified
909	total IgG to assess functional antibody quality, i.e., GIA per unit anti-RH5ΔNL IgG. A non-linear
910	regression curve is shown for all samples combined in each vaccine group (RH5.1: r ² =0.86, N=144;
911	RH5.2: r ² =0.90, N=143; RH5.2-VLP: r ² =0.95, N=120). The dashed line indicates 50 % GIA.

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is may available under aCC-BY 4.0 International license. **Figure 1**

Overlapping Peptide Number

Reduced

HBsAg-SC VLP

G

RH5.2-VLP (0.25:1 Mr)

0.25

Molar Ratio

0.5

1

0.1

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is may available under aCC-BY 4.0 International license. **Figure 4**

Supplementary Figures

Figure S1. Assessment of an anti-RH5 C-terminal human mAb.

(A) The recombinant human IgG1 mAb, R5.CT1, was tested by ELISA at 2 µg/mL against linear overlapping peptides spanning the RH5 vaccine insert, colour-coded as per **Figure 1**. Data from single wells are shown, but data are representative of N=3 repeats. Peptides 61 and 62 span the C-terminal 20 amino acids of RH5 and differ by only one amino acid¹. RH5-Nt and RH5_FL = recombinant protein controls for RH5 N-terminus and full-length, respectively. (**B**) Individual mAbs were tested in triplicate in the GIA assay against 3D7 clone *P. falciparum* parasites. Individual and mean ± SEM GIA % are shown for each mAb. 2AC7 and R5.016 (positive control mAbs) bind RH5ΔNL ^{2,3} and were tested at 15-20 µg/mL; EBL040 (negative control mAb against Ebola virus) ⁴ and R5.CT1 were tested at 0.5 mg/mL. Dashed line at 10 % GIA represents typical cut-off for positivity in the assay.

Figure S2. ELISA to screen for RH5 protein binding to a panel of anti-RH5 human mAbs.

A binding ELISA was performed on (**A**) RH5 Δ NLC-ST protein, (**B**) RH5 Δ NLC^{HS1}-ST protein and (**C**) RH5.2-VLP using a panel of anti-RH5 human mAbs. This mAb panel is color-coded as previously reported and defines seven epitope regions or antibody competition binding groups across the RH5 molecule ². Antibodies of the same color compete for binding, but do not compete with antibodies in other color-coded groups. Clone R5.007 (purple) binds a linear peptide epitope in the intrinsic loop ² and therefore should not bind to either of these proteins given they lack this sequence. The remaining six groups bind conformational epitopes ². The red, blue and brown groups include growth inhibitory antibodies that bind close to or within the basigin binding site on RH5 ²; the green Page **2** of **6**

antibodies do not inhibit invasion but can synergize with other growth inhibitory antibodies ²; the yellow and orange antibodies do not inhibit parasite growth *in vitro* but block RH5 binding to CyRPA ^{2,5}. Neg is an irrelevant human IgG1 antibody control. PBS = phosphate-buffered saline only control. Results show the mean and range of optical density at 405 nm (OD₄₀₅) of triplicate wells.

Figure S3. Immunogenicity testing of the RH5.2-VLP vaccine candidate.

BALB/c mice (N=6 per group) were immunized intramuscularly with three doses of RH5.2-ST protein or RH5.2-VLP on days 0, 21 and 42 either with (closed symbols) or without (open symbols) Matrix-MTM (MM) adjuvant. Dosing of the RH5.2-VLP was adjusted in each case to deliver the same molar amount of RH5.2 antigen as the soluble protein comparator (1, 0.1 or 0.01 μ g). Anti-RH5 (full-length RH5.1) IgG titers were measured in the serum by ELISA after (**A**) dose 1 at day 20, and (**B**) dose 2 at day 41. Each point represents a single mouse and the line the median.

Figure S4. Immunogenicity testing of the RH5.2-VLP vaccine produced with different conjugation efficiencies.

BALB/c mice (N=6 per group) were immunized intramuscularly with three doses of RH5.2-VLP, produced using the indicated molar ratios of RH5.2-ST to HBsAg-SC (0.1:1, 0.25:1, 0.5:1 and 1:1), on days 0, 21 and 42. Dosing was adjusted in each case to deliver the same molar amount of RH5.2 antigen (10 ng); total RH5.2-VLP dose = 232, 52, 40 and 23 ng, respectively. All vaccines were formulated in Matrix-MTM adjuvant. Anti-RH5 (full-length RH5.1) IgG titers were measured in the serum by ELISA after (**A**) dose 1 at day 20, and (**B**) dose 2 at day 41. Each point represents a single mouse and the line the median. Analysis using Kruskal-Wallis test with Dunn's multiple comparison test across the four groups; ***P* < 0.01.

Supplementary References

- Payne, R.O., Silk, S.E., Elias, S.C., Miura, K., Diouf, A., Galaway, F., de Graaf, H., Brendish, N.J., Poulton, I.D., Griffiths, O.J., *et al.* (2017). Human vaccination against RH5 induces neutralizing antimalarial antibodies that inhibit RH5 invasion complex interactions. *JCI Insight* 2, 96381.
- Alanine, D.G.W., Quinkert, D., Kumarasingha, R., Mehmood, S., Donnellan, F.R., Minkah, N.K., Dadonaite, B., Diouf, A., Galaway, F., Silk, S.E., *et al.* (2019). Human Antibodies that Slow Erythrocyte Invasion Potentiate Malaria-Neutralizing Antibodies. *Cell* 178, 216-228.
- Douglas, A.D., Williams, A.R., Knuepfer, E., Illingworth, J.J., Furze, J.M., Crosnier, C., Choudhary, P., Bustamante, L.Y., Zakutansky, S.E., Awuah, D.K., *et al.* (2014). Neutralization of Plasmodium falciparum Merozoites by Antibodies against PfRH5. *J Immunol* 192, 245-258.
- Rijal, P., Elias, S.C., Machado, S.R., Xiao, J., Schimanski, L., O'Dowd, V., Baker, T., Barry, E., Mendelsohn, S.C., Cherry, C.J., *et al.* (2019). Therapeutic Monoclonal Antibodies for Ebola Virus Infection Derived from Vaccinated Humans. *Cell Rep* 27, 172-186 e177.
- Ragotte, R.J., Pulido, D., Lias, A.M., Quinkert, D., Alanine, D.G.W., Jamwal, A., Davies, H., Nacer, A., Lowe, E.D., Grime, G.W., *et al.* (2022). Heterotypic interactions drive antibody synergy against a malaria vaccine candidate. *Nat Commun* 13, 933.